Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenhoangtung
Xem chi tiết
HT.Phong (9A5)
4 tháng 9 2023 lúc 17:59

Ta có:

\(B=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\) (ĐK: \(x\ne4;x\ge0\)

\(B=\dfrac{x}{\left(\sqrt{x}\right)^2-2^2}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(B=\dfrac{x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(\Rightarrow P=\dfrac{A}{B}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}}{\sqrt{x}-2}}=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\cdot\sqrt{x}}=\dfrac{x-4}{x}\) (ĐK: \(x\ne0\)

Theo đề ta có:

\(P\cdot x\le10\sqrt{x}-29-\sqrt{x}+25\) (ĐK: \(x\ge0\)

\(\Leftrightarrow\dfrac{x-4}{x}\cdot x\le9\sqrt{x}-4\)

\(\Leftrightarrow x-4\le9\sqrt{x}-4\)

\(\Leftrightarrow x-9\sqrt{x}\le0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-9\right)\le0\)

Mà: \(\sqrt{x}\ge0\)

\(\Leftrightarrow\sqrt{x}-9\le0\)

\(\Leftrightarrow\sqrt{x}\le9\)

\(\Leftrightarrow x\le81\)

Kết hợp với đk:

\(0\le x\le81\)

Trang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 19:38

a: Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=1-\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=1-\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

b: Ta có: P=A:B

\(=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{x-5\sqrt{x}+6}\right)\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{1}{\sqrt{x}+1}:\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

Phan Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 0:18

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 18:58

Bài 1:

a: \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)

\(=3\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-6\sqrt{3}\)

\(=-3\sqrt{3}+2\sqrt{3}=-\sqrt{3}\)

b: \(\left(\sqrt{14}-\sqrt{10}\right)\cdot\sqrt{6+\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{2}\cdot\sqrt{6+\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{12+2\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)=7-5=2\)

c: \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)

\(=\sqrt{3}-\sqrt{3}-1=-1\)

Bài 2:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-5+\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

b: A=2

=>\(\sqrt{x}=2\left(\sqrt{x}-1\right)\)

=>\(2\sqrt{x}-2=\sqrt{x}\)

=>\(\sqrt{x}=2\)

=>x=4(nhận)

c: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1+1⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1\inƯ\left(1\right)\)

=>\(\sqrt{x}-1\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{2;0\right\}\)

=>\(x\in\left\{4;0\right\}\)

Trần Hoàng Anh
Xem chi tiết
Xyz OLM
27 tháng 9 2023 lúc 20:48

Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)

Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)

=> A < 2

illumina
Xem chi tiết
Toru
27 tháng 9 2023 lúc 20:40

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\left(x\ge0;x\ne25\right)\)

Để \(A=\dfrac{2\sqrt{x}}{3}\) thì:

\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=\dfrac{2\sqrt{x}}{3}\)

\(\Leftrightarrow3\sqrt{x}-15=2x+10\sqrt{x}\)

\(\Leftrightarrow2x+10\sqrt{x}-3\sqrt{x}+15=0\)

\(\Leftrightarrow2x+7\sqrt{x}+15=0\) 

Mà \(2x+7\sqrt{x}+15>0\) (vì \(x\ge0\))

nên không tìm được giá trị nào của \(x\) thoả mãn \(A=\dfrac{2\sqrt{x}}{3}\)

#\(Toru\)

Hoài Thu Vũ
Xem chi tiết
Tuyet
25 tháng 6 2023 lúc 15:45

loading...  

Trang Nguyễn
Xem chi tiết
Akai Haruma
26 tháng 8 2021 lúc 13:10

Lời giải:
ĐKXĐ: $x>0$

a. \(P=\frac{x-1}{\sqrt{x}}:\left[\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}+1)}+\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right]\)

\(=\frac{x-1}{\sqrt{x}}:\frac{x-1+1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}=\frac{x-1}{\sqrt{x}}:\frac{\sqrt{x}(\sqrt{x}-1)}{\sqrt{x}(\sqrt{x}+1)}=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\frac{(\sqrt{x}+1)^2}{\sqrt{x}}\)

b.

\(x=\frac{4}{4+2\sqrt{3}}=(\frac{2}{\sqrt{3}+1})^2\Rightarrow \sqrt{x}=\frac{2}{\sqrt{3}+1}\)

\(P=\frac{(\frac{2}{\sqrt{3}+1}+1)^2}{\frac{2}{\sqrt{3}+1}}=\frac{3+3\sqrt{3}}{2}\)

 

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 13:16

a: Ta có: \(P=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\)

Linnz
Xem chi tiết
Nguyễn Phúc Hưng
8 tháng 7 2023 lúc 21:27

\(a.P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{10\sqrt{x}-2x}\left(x>0,x\ne4,x\ne25\right)\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right].\dfrac{x-4}{10\sqrt{x}-2x}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{10\sqrt{x}-2x}\)

\(=\dfrac{2x}{x-4}.\dfrac{x-4}{2\sqrt{x}\left(5-\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}}{5-\sqrt{x}}\)

\(b.\) Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(\dfrac{\sqrt{\dfrac{1}{4}}}{5-\sqrt{\dfrac{1}{4}}}=\dfrac{0,5}{5-0,5}=\dfrac{1}{9}\)

Vậy ......................

\(c.P< -1\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{5-\sqrt{x}}< -1\)

\(\Leftrightarrow\dfrac{\sqrt{x}+5-\sqrt{x}}{5-\sqrt{x}}< 0\)

\(\Leftrightarrow\dfrac{5}{5-\sqrt{x}}< 0\)

\(\Leftrightarrow5-\sqrt{x}< 0\)

\(\Leftrightarrow\sqrt{x}>5\)

\(\Leftrightarrow x>25\left(tm\right)\)

Vậy ...................

Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 7 2021 lúc 22:17

a) Ta có: \(P=\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)

\(=5+\sqrt{2}-4-\sqrt{2}\)

=1

Thay x=1 vào P, ta được:

\(P=\dfrac{1+1}{1+3}=\dfrac{2}{4}=\dfrac{1}{2}\)