Cho ∆ABC vuông tại A và AB = 5 cm; AC = 12 cm. Phân giác của ABC cắt AC tại M.
a) Tính BC
b) Tính MA; MC.
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .
Câu 8: Cho ∆ABC vuông tại A, đường cao AH. Biết AB = 8 cm và trung tuyến AM = 5 cm. Khi đó diện tích ∆ABC bằng ……cm 2
\(S_{ABC}=24\left(cm^2\right)\)
Cho tam giác ABC vuông tại A biết AB= 3 cm, BC= 5 cm. Trên tia đối của tia AB lấy điểm M sao cho AB=AM
a/ Tính AC
b/ chứng minh: Tam giác ABC= tam giác AMC
c/ Kẻ AH vuông góc với BC tại H và AK vuông góc với MC tại K. Chứng minh BH=BK
d/ chứng minh HK//BM
( vẽ hình cho mik nx nha)
trả lời giúp mik vs mik đang cần gấpppp
Cho tam giác ABC vuông tại A, đường phân giác BD. Tính AB, BC biết AD = 4 cm và DC = 5 cm.
Áp dụng tính chất đường phân giác BD của tam giác
ABC, ta có:
với t > 0
Áp dụng định lý Py – ta – go ta có:
B C 2 = A C 2 + A B 2 hay ( 5 t ) 2 = 9 2 + ( 4 t ) 2 ⇔ ( 3 t ) 2 = 9 2 ⇒ t = 3 (vì t > 0 )
Khi đó: AB = 12cm, BC = 15cm
Cho tam giác ABC vuông tại A, đường phân giác BD. Tính AB, BC biết AD = 4 cm và DC = 5 cm.
Áp dụng tính chất đường phân giác BD của tam giác ABC, ta có:
với t > 0
Áp dụng định lý Py – ta – go ta có:
Khi đó: AB = 12cm, BC = 15cm
Cho Tam giác ABC vuông tại A (AB<AC), đường cao AH
A)Cho AB=6cm và cosABC=3/5. Tình BC,AC,BH
B)Kẻ HD vuông góc với AD tại D , HE vuông góc với AC tại E . CM AD.AB=AE.AC
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Bài 5: Cho tam giác ABC vuông tại A,
AB=12 cm BC=13 cm
Gọi M, N lần lượt là trung
điểm của AB và BC
a) Chứng minh
MN vuông góc AB
b) Tính độ dài MN
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm BC(gt)
=> MN là đường trung bình của tam giác ABC
=> MN//AC
Mà AB⊥AC
=> MN⊥AB
b) Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=5\left(cm\right)\)
Xét tam giác ABC có
MN là đường trung bình
=> \(MN=\dfrac{1}{2}AC=\dfrac{1}{2}.5=\dfrac{5}{2}\left(cm\right)\)
Cho △ ABC vuông tại A, đường cao AH. Biết AB = 13cm và BH = 5 cm. Tính tan C
A. tan C = 5 7
B. tan C = 5 12
C. tan C = 7 12
D. tan C = 12 7
Đáp án B
Áp dụng định lí Pytago vào tam giác ABH vuông tại H ta có:
AHÁp dụng định lí Pytago vào tam giác ABH vuông tại H ta có:
A H 2 + B H 2 = A B 2
⇔ A H 2 = A B 2 - B H 2 = 13 2 - 5 2 = 144
⇔ AH = 12cm
Áp dụng tỉ số lượng giác của nhọn trong tam giác vuông ABH ta có:
Do tam giác BAC là tam giác vuông nên hai góc B và C là 2 góc phụ nhau.
Suy ra:
Cho tam giác ABC vuông tại A Gọi M, N lần lượt là trung điểm của AB và AC biết AB = 6 cm MN = 5 cm. Tính AC