Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 2 2017 lúc 16:22

Thanh Thuy
Xem chi tiết
Lê Quang Thiên
Xem chi tiết
Lê Quang Thiên
5 tháng 4 2019 lúc 11:53

Mik cần gấp vì chj nay phải đi hok.

Thùy Oanh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 8 2020 lúc 18:59

1.

\(\Leftrightarrow1-cos^22x-2\left(\frac{1+cos2x}{2}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow-cos^22x-cos2x+\frac{3}{4}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi\)

2.

\(2\left(2cos^2x-1\right)+2cosx-\sqrt{2}=0\)

\(\Leftrightarrow4cos^2x+2cosx-2-\sqrt{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{2}}{2}\\cosx=-\frac{1+\sqrt{2}}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+l2\pi\end{matrix}\right.\)\(-\frac{\pi}{2}< x< \frac{5\pi}{2}\Rightarrow\left\{{}\begin{matrix}-\frac{\pi}{2}< \frac{\pi}{4}+k2\pi< \frac{5\pi}{2}\\-\frac{\pi}{2}< -\frac{\pi}{4}+l2\pi< \frac{5\pi}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=0;1\\l=0;1\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{4};\frac{9\pi}{4};-\frac{\pi}{4};\frac{7\pi}{4}\right\}\)

Có 4 nghiệm

Nguyễn Việt Lâm
20 tháng 8 2020 lúc 19:03

3. ĐKXĐ: ...

\(2tanx-\frac{2}{tanx}-3=0\)

\(\Leftrightarrow2tan^2x-3tanx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\frac{1}{2}\\tanx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-\frac{1}{2}\right)+k\pi\\x=arctan\left(2\right)+k\pi\end{matrix}\right.\)

Có 3 nghiệm trong khoảng đã cho \(x=arctan\left(-\frac{1}{2}\right);x=arctan\left(-\frac{1}{2}\right)+\pi;x=arctan\left(2\right)\)

Nguyễn Việt Lâm
20 tháng 8 2020 lúc 19:11

4. ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)

\(\Leftrightarrow cot^2x-\sqrt{3}cotx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nghiệm âm lớn nhất của pt là \(x=-\frac{\pi}{2}\)

5. ĐKXĐ; ...

\(\Leftrightarrow tan^2x-\left(1+\sqrt{3}\right)tanx+\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+l\pi\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2019\pi< \frac{\pi}{4}+k\pi< 2019\pi\\-2019\pi< \frac{\pi}{3}+l\pi< 2019\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2019\le k\le2018\\-2019\le l\le2018\end{matrix}\right.\)

Tổng các nghiệm: \(2.\left(-2019\pi\right)+4038\left(\frac{\pi}{3}+\frac{\pi}{4}\right)=-\frac{3365\pi}{2}< -3\)

Đáp án A đúng

thị thanh xuân lưu
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:28

1.

Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?

2.

\(sin3x-4sinx.cos2x=0\)

\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)

\(\Leftrightarrow2sinx-sin3x=0\)

\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)

\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)

\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:33

3.

\(sin^2x.cosx=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

4.

\(\sqrt{3}sin2x+1-cos2x=3\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)

Nguyễn Việt Lâm
5 tháng 9 2020 lúc 19:37

5.

Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)

6.

\(sinx+cosx-2sinx.cosx+1=0\)

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)

Pt trở thành:

\(t+1-t^2+1=0\)

\(\Leftrightarrow-t^2+t+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow2sinx.cosx=t^2-1=0\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\frac{k\pi}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 7 2019 lúc 17:57

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 1 2017 lúc 15:09

Đáp án là B

nguyễn van cường
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 4 2021 lúc 20:00

1. Với m = -1 

Phương trình đã cho trở thành x2 + 2x - 3 = 0

Dễ thấy phương trình có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = -3

Vậy ...

2. a) Để phương trình có hai nghiệm phân biệt thì Δ' > 0

=> 1 - ( 4m + 1 ) > 0

<=> 1 - 4m - 1 > 0 <=> m < 0

b) Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=4m+1\end{cases}}\)

Để phương trình có hai nghiệm trái dấu thì x1x2 < 0 <=> 4m + 1 < 0 <=> m < -1/4

c) x12 + x22 = 11 <=> ( x1 + x2 )2 - 2x1x2 = 11

<=> 4 - 2( 4m + 1 ) = 11

<=> -8m - 2 = 7

<=> m = -9/8

Khách vãng lai đã xóa
nguyễn van cường
28 tháng 4 2021 lúc 19:01

giải dùm vs ạ

Khách vãng lai đã xóa
Nguyen Thi Phung
Xem chi tiết
Nguyễn Thành Trương
19 tháng 7 2019 lúc 17:08
\(\tan (2x - {15^0}) = 1 \\\Leftrightarrow 2x - {15^0} = {45^0} + k{180^0}\\ \Leftrightarrow 2x = {60^0} + k{180^0}\\ \Leftrightarrow x = {30^0} + k{90^0}(k \in \mathbb{Z}).\)
Xét \(x = {30^0} + k{90^0}\): Theo đề bài nên \(x = {30^0}(k \in \mathbb{Z})\) Chọn C