Cho ΔABC biết A(1;0), B(-3;2), C(2;7).
a) Tìm N thuộc Oy sao cho khoảng cách từ N → B bằng 2.
b) Tìm P thuộc Δ: x - y + 1 = 0 cách đều A và C.
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
1.
a) Cho ΔABC có : AC=5cm, BC=3cm. Tìm cạnh AB biết, AB là số nguyên và AB>6cm
b) Cho ΔABC có: AB=8cm, AC=6cm. Tính BC, biết BC là số nguyên BC<4cm
a: AC-BC<AB<AC+BC
=>5<AB<8
mà AB>6
nên AB=7cm
b: AB-AC<BC<AB+AC
=>2<BC<14
mà BC<4
nên BC=3cm
a)Cho ΔABC có a=5,b=6,góc ACB=30 độ.Tính cạnh AB
b)Cho ΔABC cân tại A,có cạnh AB=a.Tính số đo các cạnh,các góc còn lại của ΔABC và tính bán kính đường tròn ngoại tiếp ΔABC biết góc A=70 độ
Cho ΔABC: góc A = 90o, AH⊥BC. Tính diện tích ΔABC. Biết AH = 12cm, BH= 9cm
BC=9cm chứ?
`S_{DeltaABC}=(AH.BC)/2=(12.9)/2=6.9=54cm^2`
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow CH=\dfrac{12^2}{9}=\dfrac{144}{9}=16\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=\dfrac{300}{2}=150\left(cm^2\right)\)
BÀI 1: Cho ΔABC vuông tại A. Biết BC=a, đường cao AH. Chứng minh rằng:
a, AH = a . sinB . cosB
b, BH = a . cos2B
c, CH = a . sin2B
BÀI 2: Cho ΔABC vuông ở A, đường cao AH, đường phân giác trong AD chia cạnh huyền thành hai đoạn tỉ lệ 1 : 3. Tính tỉ số của hai đoạn thẳng BH và CH.
GIÚP MÌNH VỚI Ạ! MÌNH CẦN GẤP
Bài 2:
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
⇔ \(\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{BC.BH}{BC.CH}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
Cho ΔABC vuông tại B biết: BC=2a; góc A=45°: a) Tính độ dài cạnh AB; AC b) Kẻ BH vuông góc AC. Tính BH=? c) Tính diện tích ΔABC d) Tính chu vi ΔABC e) Tính bán kính đường tròn ngoại tiếp ΔABC
a: ΔBAC vuông tại B có góc A=45 độ
nên ΔBAC vuông cân tại B
=>BA=BC=2a
AC=căn AB^2+BC^2=2a*căn 2
b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2
c: S ABC=1/2*2a*2a=2a^2
d: C=2a+2a+2a*căn 2=4a+2a*căn 2
* Cho ΔABC vuông tại A, biết AC= 12cm, BC=15cm
a. Giải tam giác ABC
b. Tính độ dài đường cao AH, đường phân giác AD của ΔABC
* Cho ΔABC có 3 góc nhọn, kẻ đường cao AH.
a. CM: sinA+cos A>1
b. CM: BC=AH. (cotgB+cotgC)
c. Biết AH=6cm, góc B=\(60^0\), góc C=\(45^0\). Tính diện tích ΔABC
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
Cho ΔABC vuông tại A, biết AC = 12cm, BC = 15cm.
a ) iải tam giác ABC.
b ) Tính độ dài đường cao AH, đường phân giác AD của ΔABC .
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=81\)
hay AB=9cm
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
hay \(\widehat{B}=53^0\)
* Cho ΔABC vuông tại A, biết AC= 12cm, BC=15cm
a. Giải tam giác ABC
b. Tính độ dài đường cao AH, đường phân giác AD của ΔABC
\(a,AB=\sqrt{BC^2-AC^2}=9\left(cm\right)\)
\(b,\)Áp dụng HTL:
\(AH\cdot BC=AC\cdot AB\\ \Rightarrow AH=\dfrac{12\cdot9}{15}=7,2\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}=\dfrac{3}{4}\Rightarrow BD=\dfrac{3}{4}DC\)
Mà \(BD+DC=BC=15\Rightarrow\dfrac{5}{4}DC=15\Rightarrow DC=12\left(cm\right)\)
Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=9,6\left(cm\right)\)
\(\Rightarrow HD=CD-HC=2,4\left(cm\right)\)
Áp dụng pytago: \(AD=\sqrt{AH^2+DH^2}=\dfrac{12\sqrt{10}}{5}\left(cm\right)\)
Cho ΔABC vuông tại A, đường cao AH (H Î BC). Biết tan ABC = \(\dfrac{3}{4}\), AH = 2,4 cm. Tính BH và chu vi ΔABC.
Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)
=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)
=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)
ΔABH vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=3,2^2+2,4^2=16\)
=>\(AB=\sqrt{16}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-4^2=9\)
=>\(AC=\sqrt{9}=3\left(cm\right)\)
Chu vi tam giác ABC là:
3+4+5=12(cm)