Chứng minh rằng:ƯCLN(2n+1;3n+1)=1
cho ƯCLN(a,b)=1
chứng minh rằng:ƯCLN(a+b,a)=1
.Hãy chứng minh 2n +5 chia hết cho 2n+3.Hãy chứng minh 2n+3 chia hết cho 2n+1
2n + 5 chia 2n + 3 dư 2
2n + 3 chia 2n + 1 dư 2
Không chứng minh được !
không được đâu vì các số này là số nguyên tố cùng nhau
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ta có: 1.3.5...(2n - 1)
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n)
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ]
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ]
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2)
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2)
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2)
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2)
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n
b1.Cho AB = 2CD .Chứng minh rằng ABCD chia hết cho 67
b2.chứng minh N.(n+1).(2n+1) chia hết cho 2 và 3
b3. chứng minh rằng
a.4n - 5 chia hết cho 2n - 1
b.2.(2n - 1) -3 chia hết cho 2n -1
Bài 3:
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: =>-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
chứng minh 2n+1/ 2n bình phương + 2n
chứng minh a^2n+1+b^2n+1=(a+b)(a^2n-1b+a^2n-1b^2)
Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n. Đề bài: Chứng minh rằng 1.3.5. … .(2n-1) / (n+1).(n+2). … .2n = 1/2n.
Ai làm đc mk bái làm sư phụ và TICK luôn. Nhanh lên nhé, mai mk phải nộp rùi.
1. Chứng minh rằng
a) ƯCLN(n, n + 1) = 1
b) ƯCLN (2n + 1, 2n +3)= 1
c) ƯCLN(2n+5, 3n+7) = 1
Cho a + 5b 7. Chứng minh rằng 10a + b 7 (a,b )
giúp mk vớiiiiiiiiiii
nhớ giải ra ko lm tắt nhaaaaaaaaaaaaa
thanks very muck
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
chứng minh rằng : 2n. (2n+1).(2n+2) ⋮3 với mọi số tự nhiên n
2n, 2n + 1 và 2n + 2 là 3 số tự nhiên liên tiếp. Mà trong 3 số tự nhiên liên tiếp, luôn tồn tại 1 số chia hết cho 3
--> 2n(2n + 1)(2n + 2) chia hết cho 3 với mọi số tự nhiên n.
- Khi \(2n\) chia cho 3 thì sẽ có số dư là 0,1,2:
- Xét \(2n=3k\) =>\(2n\left(2n+1\right)\left(2n+2\right)\) ⋮3 (1)
- Xét \(2n=3k+1\) =>\(2n+2=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (2)
- Xét \(2n=3k+2\) =>\(2n+1=3k+3\) =>\(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 (3)
- Từ (1),(2),(3) suy ra \(2n\left(2n+1\right)\left(2n+2\right)\)⋮3 với mọi số tự nhiên n.