Viết phương trình đường tròn
a tâm I (-1;2) tiếp xúc Δ:2x-y+3=0
b đường kính AB với A (-3;1) B (1;5)
Viết phương trình đường tròn
a tâm I (-1;2) tiếp xúc Δ:2x-y+3=0
b đường kính AB với A (-3;1) B (1;5)
a \(R=d_{\left(I;\Delta\right)}=\dfrac{\left|2\cdot\left(-1\right)-2+3\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\sqrt{5}}{5}\)
\(\Rightarrow\)PT đường tròn là: (x+1)2 + (y-2)2=\(\dfrac{1}{5}\)
b tâm I là trung điểm AB \(\Rightarrow\)I (-1;3)
\(R=\dfrac{1}{2}AB=\dfrac{1}{2}\cdot\sqrt{\left(1+3\right)^2+\left(5-1\right)^2}=2\sqrt{2}\)
\(\Rightarrow\) PT đường tròn là: (x+1)2 + (y-3)2=8
Trong mặt phẳng Oxy,viết phương trình đường tròn
a)(C2) có tâm I2(3;-2) và tiếp xúc với Δ:2x+y-1=0
Vì `(C_2)` tiếp xúc với `\Delta`
`=> d ( I_2 , \Delta ) = R`
`=> [ | 2 . 3 + 1 . (-2) - 1 | ] / [ \sqrt{ 2^2 + 1^2 } ] = R`
`=> R = 3 / \sqrt{5}`
$\bullet$ Ptr đường tròn `(C_2)` có `I_2 ( 3 ; -2)` và `R = 3 / \sqrt{5}` là:
`( x - 3 )^2 + ( y + 2 )^2 = 9 / 5`
1. viết phương trình đường tròn ngoại tiếp tam giác ABC biết A(-1,1);B(1,3);C(1,-1)
2. viết phương trình đường tròn có tâm I(-2,3) và đi qua M(2,-3)
3. viết phương trình đường tròn có tâm I nằm trên đường thẳng 4x-2y-8=0 biết đường tròn đó tiếp xúc với trục tọa độ
Bài 1: a) Viết phương trình đường tròn có tâm \(I(3;-1)\) và cắt \(d:2x-5y+18=0\) theo một dây cung có độ dài bằng 6
b) Viết phương trình đường tròn có tâm \(I(-1;2)\) và cắt đường thẳng \(d: x-5y-2=0\) theo một dây cung có độ dài bằng \(\sqrt{26}\)
Bài 2: Trong mặt phẳng \(Oxy\), cho đường tròn \((C): x^2+y^2+2x-4y-20=0\) và điểm \(A(3;0)\). Viết phương trình đường thẳng \(\Delta\) đi qua \(A\) và cắt đường tròn \((C)\) theo một dây cung MN sao cho
a) MN có độ dài lớn nhất b) MN có độ dài nhỏ nhất
gọi M,N là hai điểm cắt đg tròn tâm I
kẻ IH vuông góc với MN ,theo đề bài ta có MN =6 => MH=3
độ dài từ tâm I đến (d) =\(\dfrac{\left|2.3-5.-1+18\right|}{\sqrt{2^2+\left(-5\right)^2}}=\sqrt{29}\)
Áp dụng pytago vào tam giác vuông IMH ta có
\(IM=\sqrt{IH^2+MH^2}=\sqrt{38}\)
vậy pt đg tròn là \(\left(x-3\right)^2+\left(y+1\right)^2=\left(\sqrt{38}\right)^2\)( tới đây bạn tự khai triển ra nha
b ) cách làm tương tự
2 .
MN max khi nó là đường kính > nó phải đi qua điểm I
\(\overrightarrow{uIA}=\left(4;-2\right)=>n\overrightarrow{IA}=\left(2;4\right)\)
ptđt \(\Delta:2\left(x-3\right)+4\left(y-0\right)=0\)
MN min
ta có MN=2HM
trg tam giác vuông IHMtheo pytago ta có \(HM=\sqrt{IA^2-IH^2}\)có IA là bán kính ( cố định ) => IH max thì MN min
lại xét tam giác IHP trong tam giác IHP thì có IP là cạch huyền mà trg tam giác cạc huyền là cạch lớn nhất nên IH max khi điểm H trùng với điểm P .
Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(3;-2), bán kính 3.
a. Viết phương trình của đường tròn đó.
b. Viết phương trình ảnh của đường tròn (I;3) qua phép tịnh tiến theo vectơ v=(-2 ;1).
c. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng trục Ox.
d. Viết phương trình ảnh của đường tròn (I;3) qua phép đối xứng qua gốc tọa độ
a. Phương trình đường tròn : (x – 3)2 + (y + 2)2 = 9.
b. (I1; R1) là ảnh của (I; 3) qua phép tịnh tiến theo vec tơ v.
⇒ Phương trình đường tròn cần tìm: (x – 1)2 + ( y + 1)2 = 9.
c. (I2; R2) là ảnh của (I; 3) qua phép đối xứng trục Ox
⇒ R2 = 3 và I2 = ĐOx(I)
Tìm I2: I2 = ĐOx(I) ⇒ ⇒ I2(3; 2)
⇒ Phương trình đường tròn cần tìm: (x – 3)2 + (y – 2)2 = 9.
d. (I3; R3) là ảnh của (I; 3) qua phép đối xứng qua gốc O.
⇒ R3 = 3 và I3 = ĐO(I)
Tìm I3: I3 = ĐO(I) ⇒
⇒ Phương trình đường tròn cần tìm: (x + 3)2 +(y – 2)2 = 9.
cho tam giác abc có a (1,3) b(-2,4) c (5,-1) a) viết phương trình đường tròn tâm B đi qua c b) viết phương trình đường tròn đường kính ac c) viết phương trình đường tròn tâm tiếp xúc cạnh bc d) viết phương trình ngoại tiếp tám giác anc
Viết phương trình đường tròn tâm I(1;-3) và tiếp xúc với đường thẳng x-2y+3=0
\(R=d\left(I;\Delta\right)=\dfrac{\left|1\cdot1+\left(-3\right)\cdot\left(-2\right)+3\right|}{\sqrt{1^2+4}}=2\sqrt{5}\)
Phương trình đường tròn là:
\(\left(x-1\right)^2+\left(y+3\right)^2=20\)
\(R=\dfrac{\left|1-2.\left(-3\right)+3\right|}{\sqrt{1^2+2^2}}=2\sqrt{5}\)
Phương trình đường tròn : \(\left(x-1\right)^2+\left(y+3\right)^2=20\)
Viết phương trình đường tròn: có tâm i(1 -5) và đi qua o(0 0)
\(\overrightarrow{OI}=\left(1;-5\right)\Rightarrow R=OI=\sqrt{\left(1\right)^2+\left(-5\right)^2}=\sqrt{26}\)
Phương trình đường tròn:
\(\left(x-1\right)^2+\left(y+5\right)^2=26\)
Trong mặt phẳng toạ độ, cho hai điểm A(-1; 0) và B(3; 1).
a) Viết phương trình đường tròn tâm A và đi qua B.
b) Viết phương trình tổng quát của đường thẳng AB.
c) Viết phương trình đường tròn tâm O và tiếp xúc với đường thẳng AB.
a) Phương trình đường tròn tâm A bán kính AB là \({\left( {x + 1} \right)^2} + {y^2} = 17\)
b) Ta có \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {4;1} \right) \Rightarrow \overrightarrow {{n_{AB}}} = \left( {1; - 4} \right)\).
Phương trình AB là \(1\left( {x + 1} \right) - 4y = 0 \Leftrightarrow x - 4y + 1 = 0\).
c) Bán kính của đường tròn tâm O, tiếp xúc với đường thẳng AB là
\(R = d\left( {O,AB} \right) = \frac{{\left| {0 - 4.0 + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2}} }} = \frac{1}{{\sqrt {17} }}\)
Phương trình đường tròn tâm O tiếp xúc AB là \({x^2} + {y^2} = \frac{1}{{17}}\)