Đa thức f(x) = x5 - x4 - 4x3 + 2x2 + 4x + 1 có 5 nghiệm x1; x2; x3; x4; x5. Đa thức f(k) = x2 - 4
Tính P = k(x1) . k(x2) . k(x3) . k(x4) . k(x5)
Giả sử đa thức P ( x ) = x 5 - a x 4 + b có năm nghiệm x 1 ; x 2 ; x 3 ; x 4 ; x 5 Đặt f ( x ) = x 2 - 4 Tìm giá trị nhỏ nhất của P = f ( x 1 ) f ( x 2 ) f ( x 3 ) f ( x 4 ) f ( x 5 )
A. 512
B. -512
C. 1024
D. -1024
Cho hai đa thức
P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 ; Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2
Tìm bậc của đa thức M(x) = P(x) + Q(x)
A. 4
B. 2
C. 3
D. 1
Ta có
P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2 Và Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1
Khi đó
M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1
Bậc của M ( x ) = - x 3 + x 2 + 4 x - 1 l à 3
Chọn đáp án C
Cho hai đa thức
P ( x ) = 2 x 3 - 3 x + x 5 - 4 x 3 + 4 x - x 5 + x 2 - 2 ; Q ( x ) = x 3 - 2 x 2 + 3 x + 1 + 2 x 2
Tính P(x) - Q(x)
A. - 3 x 3 + x 2 - 2 x + 1
B. - 3 x 3 + x 2 - 2 x - 3
C. 3 x 3 + x 2 - 2 x - 3
D. - x 3 + x 2 - 2 x - 3
Ta có
P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2 Và Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2
= x 3 + - 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1
Khi đó
P ( x ) − Q ( x ) = − 2 x 3 + x 2 + x − 2 − x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 − x 3 − 3 x − 1 = − 2 x 3 − x 3 + x 2 + ( x − 3 x ) − 2 − 1 = − 3 x 3 + x 2 − 2 x − 3
Chọn đáp án B
Cho f(x)= x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7; g(x) = x4 + 4x3 − 5x8 − x7 + x3 + x2 − 2x7 + x4 – 4x2 − x8. Thu gọn và sắp xếp các đa thức f(x) và g(x) theo luỹ thừa giảm của biến rồi tìm bậc của đa thức đó.
f(x) = x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7
= (x5 + x5) + (3x2 + 2x2 – 4x2) + (-5x3 + x3) + (-x7 + x7)
= 2x5 + x2 – 4x3.
= 2x5 - 4x3 + x2
Đa thức có bậc là 5
g(x) = x4 + 4x3 – 5x8 – x7 + x3 + x2 – 2x7 + x4 – 4x2 – x8
= (x4 + x4) + (4x3 + x3) – (5x8 + x8) – (x7 + 2x7) + (x2 – 4x2)
= 2x4 + 5x3 – 6x8 – 3x7 – 3x2
= -6x8 - 3x7 + 2x4 + 5x3 - 3x2.
Đa thức có bậc là 8.
Đa thức có bậc là 5 nhe
Bài 5. Cho 2 đa thức: f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4
; g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x
a) Tính tổng h (x) = f(x) + g(x).
b) Tìm nghiệm của đa thức h(x)
Cho các đa thức:
f(x)= 2x2 - x5+ 4x3 - 2x + 1
g(x)=4x - 3x2 + 8 - 2x5 + 7x3
h(x)= 1- 2x2 + 4x3 - 3x5 - 7x3
Tính:
a) f(x) + g(x) + h(x) b) f(x) - g(x) + h(x)
c) 2f(x) + 3g(x) d) g(x) - 2h(x)
giúp e với ạ giải chi tiếp giúp e
P(x)=2x3-3x+x5-4x3+4x-x5+x2-2
Q(x)+2x3-2x2+3x+x2-6x+4
a)thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến
b) tính P(x)+Q(x);P(x)-Q(x)
c)tìm nghiệm của đa thức P(x)+Q(x)
cho đa thức f(x)=2x6+3x2+5x3-2x2+4x4+x4+1-4x3-x4
a) thu gọn , sắp xếp theo lũy thừa tăng dần , chỉ ra hệ số cao nhất , bậc và hệ số tự do của đa thức
b) tính f(-1)
c) chứng tỏ đa thức f(x) không nghiệm
a) \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4+x^4+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(4x^4+x^4-x^4\right)+\left(5x^3-4x^3\right)+\left(3x^2-2x^2\right)+1\)
\(f\left(x\right)=1+x^2+x^3+4x^4+2x^6\)
Hệ số cao nhất là 4, đa thức có bậc là 6, hệ số tự do là 1
b) Khi \(f\left(-1\right)\) thì đa thức trở thành:
\(f\left(-1\right)=2.\left(-1\right)^6+4.\left(-1\right)^4+\left(-1\right)^3+\left(-1\right)^2+1\)
\(f\left(-1\right)=2+4+-1+1+1\)
\(f\left(-1\right)=7\)
c) Vì \(2x^6+4x^4+x^3+x^2+1\ge0\) nên đa thức \(f\left(x\right)\) không có nghiệm
Cho hai đa thức
A ( x ) = x 5 + x 2 + 5 x + 6 - x 5 - 3 x - 5 , B ( x ) = x 4 + 2 x 2 - 3 x - 3 - x 4 - x 2 + 3 x + 4
c. Chứng tỏ rằng x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x)
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
e) Cho đa thức Q(x)= x4 + 4x3 + 2x2 - 4x +1
Tính Q(-2); Q(1)
Giúp mik với ạ:<<<
`Q(-2)=(-2)^4+4*(-2)^3+2*(-2)^2-4*(-2)+1`
`= 16+4*(-8)+2*4+8+1`
`= 16-32+8+8+1`
`= -16+8+8+1`
`= -8+8+1=1`
`Q(1)=1^4+4*1^3+2*1^2-4*1+1`
`= 1+4+2-4+1`
`= 2+2+4-4=4`
Q(-2) = (-2)⁴ + 4.(-2)³ + 2.(-2)² - 4.(-2) + 1
= 16 - 32 + 8 + 8 + 1
= 1
--------------------
Q(1) = 1⁴ + 4.1³ + 2.1² - 4.1 + 1
= 1 + 4 + 2 - 4 + 1
= 4