cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H. Trên đoạn thẳng AH lấy điểm M; trên tia đối của HA lấy điểm N sao cho AM=HN. Kẻ dường thẳng d đi qua M vuông góc với AH, cắt AC tại K. Chứng minh tam giác BKN là tam giác vuông.
Cho tam giác ABC (AB<AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a) Chứng minh tam giác MAB=tam giác MDC.
b) Kẻ AH vuông góc với BC tại H, kẻ DK vuông góc với BC tại K. Chứng minh: AH=DK.
c) Trên các đoạn thẳng AB và CD lần lượt lấy điểm E và F sao cho AE=DF. Chứng minh: 3 điểm E, M, F thẳng hàng.
Mai mình cần ý, vẽ hình giúp mình, mình cảm ơn ạa
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC ( điểm H thuộc BC ). Lấy điểm D trên đường thẳng AH. Trên tia đối của tia HA, lấy điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh EB vuông góc với EF.
Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2
thay AB=3cm, AC=4cm va BC=5cm, ta có:
32+42=52
=> 9+16=25 (luôn đúng)
=> đpcm
b) có D nằm trên tia đối của tia AC
=> D,A,C thằng hàng và A nằm giữa D và C
=> DA+AC=DC
=> DA+4=6
=>DA=2(cm)
áp dụng định lý Pytago vào tam giác ABD vuông tại A có:
AB2+AD2=BD2
=> 32+22=BD2
=> 9+4=BD2
=> \(BD=\sqrt{13}\)(cm)
Cho tam giác ABC vuông tại A ,kẻ Ah vuông góc với BC (H thuộc BC).Trên nửa mp bờ là đthẳng BC ko chứa điểm A vẽ tia Bx song song với AH .Trên tia Bx lấy D sao cho BD = AH .a. Chứng minh Cho tam giác ABC vuông tại A ,kẻ Ah vuông góc với BC (H thuộc BC).Trên nửa mp bờ là đthẳng BC ko chứa điểm A vẽ tia Bx song song với AH .Trên tia Bx lấy D sao cho BD = AH .
a. Chứng minh tam giác AHB và tam giác DHB bằng nhau
b. Gọi I là giao điểm của BH và DA .Chứng minh IB =IH
Cho tam giác ABC cân tại A. Kẻ AI vuông góc với BC ( I thuộc BC)
a) chứng minh tam giác ABI = tam giác ACI
b) Qua I kẻ IH vuông góc AC tại H trên tia IH lấy điểm E sao cho HE = HI. Chứng minh tam giác CIE cân
c) trên đoạn thẳng AH lấy điểm G sao cho AG = 2/3 AH . Lấy M là trung điểm của AI Chứng minh ba điểm E,G,M thẳng hàng và 2/3 (AH + ME)>AE
a: XétΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC
AI chung
=>ΔAIB=ΔAIC
b: Xét ΔCIE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCIE cân tại C
Các bn giúp mik với Cho tam giác ABC cân tại A.Từ A kẻ AH vuông góc với BC tại H,trên đoạn thẳng AH lấy điểm M tùy ý(M khác A và H).Chứng minh rằng: a)H là trung điểm BC. b)MB=MC và MH là tia phân giác của góc BMC. c)MB
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xet ΔMCB có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMCB cân tại M
=>MB=MC
mà MH là đường cao
nên MH là phân giác của góc BMC
Bài 7: Cho tam giác AB cân tại A, kẻ AH vuông góc với BC tại H. Lấy điểm D, E lần lượt thuộc các đoạn thẳng HB và HC sao cho BD=CE. So sánh độn dài đoạn thẳng AD, AE.
Bài 9: Cho tam giác ABC vuông tại A và góc B lớn hơn góc C. Kẻ AH vuông góc với BC tại H. Trên tia BH lấy điểm D sao chp H là trung điểm của BD. Gọi E là hình chiếu của D trên đường thẳng AC, K là hình chiếu của C trên đường thẳng AD. Chứng minh rằng: a) Điểm D nằm trên đoạn thẳng HC.
b) DE=DK.
1:
Xét ΔABD và ΔACE có
AB=AC
góc B=góc C
BD=CE
=>ΔABD=ΔACE
=>AD=AE
2:
a: H là trung điểm của DB
=>D thuộc tia đối của tia HB
=>D thuộc HC
b: góc KCD=góc DAH
góc DAH=góc CED
=>góc KCD=góc CED
Xét ΔCED vuông tại E và ΔCKD vuông tại K có
CD chung
góc ECD=góc KCD
=>ΔCED=ΔCKD
=>DE=DK
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC,H thuộc
BC. Lấy D thuộc đoạn AH. Trên tia đối của tia HA lấy điểm E sao cho
HE=AD. Đường vuông góc với AH tại D cắt AC tại F. Chứng minh EB vuông
góc với EF.
Xét DEF vuông tại D
EF2 = DE2 + DF2 (định lí Phythagoras)
Xét BHE vuông tại H
BE2 = BH2 + HE2 (định lí Phythagoras)
Xét ABH vuông tại H
AB2 = AH2 + BH2 (định lí Phythagoras)
Xét AFD vuông tại D
AF2 = AD2 + DF2 (định lí Phythagoras)
Xét ABF vuông tại A
BF2 = AB2 +AF2 (định lí Phythagoras)
BF2 = AH2 +BH2 +AD2 +DF2
BF2 = (AD + DH)2 + (BH2 +AD2) + DF2
BF2 = (HE +DH)2 +(BH2 + HE2) + DF2
BF2 = DE2 + BE2 + DF2
BF2 = (DE2 + DF2) + BE2
BF2 = EF2 + BE2
Xét BEF có: BF2 = EF2 + BE2
BEF vuông tại E (định lí Phythagoras)
BEF = 90o
EB EF (đpcm)
Cho tam giác ABC vuông tại A với AB = 6 cm, BC = 10 cm. Kẻ đường cao AH,(H thuộc BC), trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE vuông góc với đưòng thẳng AD ( E thuộc đường thẳng AD), đường thẳng CE cắt AH tại M. Chứng minh CB là tia phân giác của góc ACM.
Cho tam giác ABC cân tại A.Từ A kẻ AH vuông góc với BC tại H,trên đoạn thẳng AH lấy M tùy ý (M khác A và H)
Chứng minh rằng a) H là trung điểm của BC
b) MB=MC và MH là tia phân giác của góc BMC
c) MB<AB
A)TA CÓ TAM GIÁC ABC CÂN TẠI A NÊN AB=AC
DO AH VUÔNG GÓC VS BC NÊN HB=HC
SUY RA H LÀ TRUNG ĐIỂM CỦA BC
B)XÉT TAM GIÁC MBH VÀ TAM GIÁC MCH CÓ:
MB=MC(GT)
HB=HC(CMT)
MH LÀ CẠNH CHUNG NÊN HOẶC MH VUÔNG GÓC VS BC
TG MBH=TG MCH (C.C.C)-(CẠNH HUYỀN-CẠNH GÓC VUÔNG)
SUY RA GÓC BMH= GÓC CMH
TA CÓ : BMH+CMH=BMC SUY RA MH LÀ TIA PHÂN GIÁC CỦA GÓC BMC
C)CÒN PHẦN C MỊ CHỊU MỊ CX LƯỜI TÍNH