Cho A = \(\dfrac{a^2}{bc}\) + \(\dfrac{b^2}{ac}\) + \(\dfrac{c^{2^{ }}}{ab}\) với a, b, c \(\ne\)0; thỏa mãn a + b +c = 0 thì giá trị của A =?
Cho A = \(\dfrac{a^2}{bc}\) + \(\dfrac{b^2}{ac}\) + \(\dfrac{c^{2^{ }}}{ab}\) với a, b, c \(\ne\)0; thỏa mãn a + b +c = 0 thì giá trị của A =?
Cho a + b + c = 0 và a,b,c \(\ne\) 0.
Chứng minh rằng: \(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=-\dfrac{3}{2}\)
biết a2 +ab+\(\dfrac{b^2}{3}\) =2023; c2+\(\dfrac{b^2}{3}\) =2000;a2+ac+c2=23 và a\(\ne\) 0;c\(\ne\)0;a\(\ne\) -c
c/m \(\dfrac{2c}{3}\) =\(\dfrac{b+c}{a+c}\)
a^2+ab+b^2/3=c^2+b^2/3+a^2+ac+c^2
=>ab=2c^2+ac
=>2c/a=(b+c)/(a+c)
Cho a+b+c=0 và a,b,c≠0.CMR: \(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=-\dfrac{3}{2}\)
\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
\(\Rightarrow VT=\dfrac{ab}{a^2+b^2-c^{^2}}+\dfrac{bc}{b^2+c^2-a^{^2}}+\dfrac{ca}{c^2+a^2-b^{^2}}\\ =\dfrac{ab}{a^2+\left(b+c\right)\left(b-c\right)}+\dfrac{bc}{b^2+\left(c+a\right)\left(c-a\right)}+\dfrac{ca}{c^2+\left(a+b\right)\left(a-b\right)}\\ =\dfrac{ab}{a^2-a\left(b-c\right)}+\dfrac{bc}{b^2-b\left(c-a\right)}+\dfrac{ca}{c^2-c\left(a-b\right)}\\ =\dfrac{b}{a-b+c}+\dfrac{c}{b-c+a}+\dfrac{a}{c-a+b}\\ =\dfrac{b}{\left(a+c\right)-b}+\dfrac{c}{\left(a+b\right)-c}+\dfrac{a}{\left(c+b\right)-a}\\ =\dfrac{b}{-b-b}+\dfrac{c}{-c-c}+\dfrac{a}{-a-a}\\ =\dfrac{b}{-2b}+\dfrac{c}{-2c}+\dfrac{a}{-2a}\\ =-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{3}{2}=VP\)
1.\(\dfrac{\overline{ab}}{\overline{bc}}\)=\(\dfrac{b}{c}\)(c≠0).CM:\(\dfrac{a^2+b^2}{b^2+c^2}\)=\(\dfrac{a}{c}\)
2.\(\dfrac{\overline{ab}}{a+b}=\dfrac{\overline{bc}}{b+c}.CM:\dfrac{a}{b}=\dfrac{b}{c}\)(c≠a)
Câu 2:
Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)
=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc
=>9ac-9b^2=0
=>ac-b^2=0
=>ac=b^2
=>a/b=b/c
Cho A = \(\dfrac{a^2}{bc}\) + \(\dfrac{b^2}{ac}\) + \(\dfrac{c^{2^{ }}}{ab}\) với a, b, c \(\ne\)0; thỏa mãn a + b +c = 0 thì giá trị của A =?
Cho a,b,c thỏa mãn \(b\ne c,a+b\ne c,c^2=2\left(ac+bc-ab\right)\)
C/m:
\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
a ) Cho a,b,c >0 C/m:
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{a^2+b^2+c^2}{a+b+c}\)
b ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)
c ) Cho a,b,c > 0 . C/m :
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}\ge a+b+c.\)
giúp nha mn
a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)
b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)
\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)
b)
Áp dụng BĐT Cauchy Shwarz, ta có:
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\dfrac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy Shwarz dạng Engel, ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)^3}{9}}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a+b+c\right)}{3}\times\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c.