cho phân số A=\(\dfrac{n+4}{n+1}\)
Tính giá trị phân số A khi n=0; n= -3; n=3
gấp nhé đến 10h15 ngày 5/1/2024 nhé
Cho phân số: A = \(\dfrac{2}{\left(n-2\right)\left(n+1\right)}\)
a, Tìm n để phân số A không tồn tại
b, Tìm n để phân số A tồn tại
c, Tính giá trị của A khi n = -13; n = 0; n = 13
a, Để phân số A ko tồn tại thì phân số A phải có mẫu là 0
n - 2 = 0
n = 0 + 2
n = 2
hoặc n + 1 = 0
n = 0 - 1
n = -1
Vậy n có thể là { 2 ; -1 }
b, Ở câu a đã loại trừ đc phương án n để A ko tồn tại . Vậy để n tồn tại thì n khác 2 và -1
=> n thuộc { 0 ; 1 ; -2 ; 3 ; -3 ; 4 ; -4 ; ... }
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
a) Cho phân số \(\dfrac{13}{42}\). Hãy tìm một số tự nhiên n sao cho khi cộng tử số với n và giữ nguyên mẫu số thì được phân số mới có giá trị bằng \(\dfrac{5}{6}\).
b) Tính nhanh
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{6}+\dfrac{4}{8}+\dfrac{5}{10}+\dfrac{6}{12}+\dfrac{7}{14}+\dfrac{8}{16}+\dfrac{9}{18}+\dfrac{10}{20}\)
Cho A = n + 5 n + 4 với n ∈ Z
a) Tìm điều kiện của số nguyên n để A là phân số.
b) Tính giá trị của phân số A khi n = 1; n = -1.
c) Tìm số nguyên n để phân số A có giá trị là số nguyên
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
Cho A = n + 5 n + 4 với n ∈ ℤ .
a) Tìm điều kiện của số nguyên n để A là phân số.
b) Tính giá trị của của phân số A khi n = 1; n = -1
c) Tìm số nguyên n để phân số A có giá trị là số nguyên.
Cho phân số A = 𝑛 + 4 / 𝑛 − 2 với n thuộc Z
a) Tìm điều kiện của n để phân số A có nghĩa
b) Tính giá trị của A khi n = 0, n = -2, n = 4
c) Tìm tất cả các giá trị nguyên của n để A là số nguyên
a, đk : n khác 2
b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)
Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
a: Để phân số A có nghĩa thì n-2<>0
hay n<>2
b: Thay n=0 vào A, ta được:
\(A=\dfrac{0+4}{0-2}=-2\)
Thay n=-2 vào A, ta được:
\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Thay n=4 vào A, ta được:
\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
a) Để A là phân số thì n ∈ Z và n ≠ 2 .
b) Khi n = 0 thì A = \(\dfrac{0 + 4}{ 0 - 2}\) = \(\dfrac{4}{-2}\) = -2 .
Khi n = -2 thì A = \(\dfrac{ -2 + 4 }{ -2 - 2} \) = \(\dfrac{2}{-4}\) = \(\dfrac{-1}{2}\)
Khi n = 4 thì A = \(\dfrac{ 4 + 4}{ 4 - 2}\) = \(\dfrac{8}{2}\) = 4
c) Để A = \(\dfrac{ n + 4}{ n - 2}\) nguyên
➙ \(\dfrac{ n - 2 + 6}{ n -2 } \) nguyên
➙ \(\dfrac{ n - 2 }{ n - 2 } + \dfrac{ 6}{ n - 2 } = 1 + \dfrac{ 6 }{ n - 2 }\) nguyên
➙ \(\dfrac{6}{ n - 2 }\) nguyên
➙ n - 2 ∈ Ư( 6 ) = { ±1;±2;±3;±6}
Lập bảng :
n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
Vậy n ∈ { 3 ; ±1 ; ±4 ; 0 ; 5 ; 8 }
Bài 1:
Tìm số nguyên n để phân số A= \(\dfrac{1}{n+3}\)có giá trị nguyên
Bài 2 : Tìm số nguyên n để phân số B = \(\dfrac{n+4}{n+1}\)có giá trị nguyên
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
Để A nguyên
⇒ \(\left(n+3\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
n+3 1 -2
n -2 -4
\(B=\dfrac{n+3+1}{n+1}=1+\dfrac{3}{n+1}\)
Để B nguyên
\(\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 1 -1 3 -3
n 0 -2 2 -4
a) Tìm các số nguyên n để phân số sau có giá trị nguyên:
\(A=\dfrac{n-5}{n-3}\)
\(\dfrac{n+4}{n+1}\)
b) Tính A, biết A= \(\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\).
Nếu \(n-3=1\Rightarrow n=4\); \(n-3=-1\Rightarrow n=2\); \(n-3=2\Rightarrow n=5\); \(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)
\(A=\dfrac{n+4}{n+1}\) làm tương tự.
b) Dễ thấy các số ở mẫu có thể viết dưới dạng:
\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)
\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)
\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)
...
\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)
Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\)
\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(A=\dfrac{3}{8}\)
Cho A = n + 3 n + 2 với n ∈ Z.
a) Tìm điểu kiện của số nguyên n để A là phân số.
b) Tính giá trị của phân số A khi n = 1; n = -1.
c) Tìm số nguyên n để phân số A có giá trị là số nguyên:
a) n ∈ Z và n ≠ –2
b) HS tự làm
c) n ∈ {-3;-1}