a, đk : n khác 2
b, Với n = 0 => \(A=\dfrac{0+4}{0-2}=\dfrac{4}{-2}=-2\)
Với n = -2 => \(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Với n = 4 => \(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c, \(A=\dfrac{n+4}{n-2}=\dfrac{n-2+6}{n-2}=1+\dfrac{6}{n-2}\Rightarrow n-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
a: Để phân số A có nghĩa thì n-2<>0
hay n<>2
b: Thay n=0 vào A, ta được:
\(A=\dfrac{0+4}{0-2}=-2\)
Thay n=-2 vào A, ta được:
\(A=\dfrac{-2+4}{-2-2}=\dfrac{2}{-4}=-\dfrac{1}{2}\)
Thay n=4 vào A, ta được:
\(A=\dfrac{4+4}{4-2}=\dfrac{8}{2}=4\)
c: Để A là số nguyên thì \(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
a) Để A là phân số thì n ∈ Z và n ≠ 2 .
b) Khi n = 0 thì A = \(\dfrac{0 + 4}{ 0 - 2}\) = \(\dfrac{4}{-2}\) = -2 .
Khi n = -2 thì A = \(\dfrac{ -2 + 4 }{ -2 - 2} \) = \(\dfrac{2}{-4}\) = \(\dfrac{-1}{2}\)
Khi n = 4 thì A = \(\dfrac{ 4 + 4}{ 4 - 2}\) = \(\dfrac{8}{2}\) = 4
c) Để A = \(\dfrac{ n + 4}{ n - 2}\) nguyên
➙ \(\dfrac{ n - 2 + 6}{ n -2 } \) nguyên
➙ \(\dfrac{ n - 2 }{ n - 2 } + \dfrac{ 6}{ n - 2 } = 1 + \dfrac{ 6 }{ n - 2 }\) nguyên
➙ \(\dfrac{6}{ n - 2 }\) nguyên
➙ n - 2 ∈ Ư( 6 ) = { ±1;±2;±3;±6}
Lập bảng :
n - 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 3 | 1 | 4 | 0 | 5 | -1 | 8 | -4 |
Vậy n ∈ { 3 ; ±1 ; ±4 ; 0 ; 5 ; 8 }