Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Thùy Linh
Xem chi tiết
Angela jolie
Xem chi tiết
Lê Anh Duy
1 tháng 2 2020 lúc 15:24

BĐT cộng mẫu số

\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1\)

Dấu "=" xảy ra khi x=y=z= 2/3

Khách vãng lai đã xóa
Angela jolie
Xem chi tiết
Lê Thị Thục Hiền
8 tháng 10 2019 lúc 16:44

Thiếu đk: x,y,z là số thực dương

Có ct tổng quát: \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

<=> \(3.9\ge\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

=> \(\left\{{}\begin{matrix}0< x+y+z\le\sqrt{27}=3\sqrt{3}\\0< xy+yz+xz\le9\\xy+yz+zx\le x+y+z\end{matrix}\right.\)

=> \(x+y+z-\left(xy+yz+xz\right)\le3\sqrt{3}-9\)

<=>\(P\le3\sqrt{3}-9\)

Dấu "=" xảy ra <=> x=y=z=\(\sqrt{3}\)

P/s: không chắc bài đúng

Angela jolie
Xem chi tiết
Diệu Huyền
3 tháng 2 2020 lúc 10:48

\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)

\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)

Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)

\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)

\(\Rightarrow Min_A=\frac{17}{3}\)

Khách vãng lai đã xóa
Trần Hải Việt シ)
Xem chi tiết
ERROR
11 tháng 3 2022 lúc 20:59

A = 3x^3 +6x^2 + 3xy^3

x= 1 phần 2 ;  p = -1 phần 3

A=3.1 phần 2^3 . -1 phần 3     + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3

=-1 phần 8      + -1 phần 2 - 1 phần 2

= -1 phần 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 2 2019 lúc 8:23

CAO Thị Thùy Linh
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2020 lúc 7:38

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)=1\)

\(\Rightarrow M_{min}=1\) khi \(x=y=z=\frac{2}{3}\)

Khách vãng lai đã xóa
Phan Đình Trường
Xem chi tiết
Neet
22 tháng 6 2017 lúc 14:46

Áp dụng BĐT cauchy:

\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)

\(M\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+xz\right)}+\dfrac{7}{xy+yz+zx}\)Áp dụng BĐT cauchy-schwarz:

\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

\(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Trần Hoàng Việt
11 tháng 8 2018 lúc 20:19

cô si cho đễ hiểu đi bn , cần gì phải cauchy s,. làm gì cho mệt