Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phát nè
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 9:09

ΔMNP vuông tại M

=>\(NP^2=MN^2+MP^2\)

=>\(NP^2=3^2+4^2=25\)

=>\(NP=\sqrt{25}=5\left(cm\right)\)

Xét ΔMNP vuông tại M có MH là đường cao

nên \(MH\cdot NP=MN\cdot MP\)

=>\(MH\cdot5=3\cdot4=12\)

=>MH=12/5=2,4(cm)

Xét ΔPMN vuông tại M có MH là đường cao

nên \(PH\cdot PN=PM^2\)

=>\(PH\cdot5=4^2=16\)

=>PH=16/5=3,2(cm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2018 lúc 8:11

MH =  3 5 cm

Linh Thuỳ
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 12:59

Sửa đề: MP=24cm

NP=căn 18^2+24^2=30cm

NH=MN^2/NP=18^2/30=324/30=10,8cm

MH=18*24/30=14,4cm

 

Linh Thuỳ
Xem chi tiết
2611
28 tháng 7 2023 lúc 11:02

loading...

thảo trần
28 tháng 7 2023 lúc 11:22

(Tự vẽ hình)

- Xét △MNP vuông tại M, áp dụng định lí Pytago:

\(^{NM^2}\)+\(MP^2\)=\(NP^2\)

=\(72^2\)+\(96^2\)=\(NP^2\)

\(NP^2\)=\(72^2\)+\(96^2\)=14400

\(NP\)=\(\sqrt{14400}\)=120cm

 - Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:

\(MN^2\)=\(NH.NP\)

\(72^2\)=\(NH.120\)

\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm

\(MH.NP\)=\(MP.MN\)

⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm

 

Long Nguyễn Thị
Xem chi tiết
Cao ngocduy Cao
9 tháng 9 2021 lúc 15:15

con gi nua ko bi thieu de

M r . V ô D a n h
9 tháng 9 2021 lúc 15:15

3\(\sqrt{5}\)

Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 15:16

\(MH=\sqrt{9\cdot5}=3\sqrt{5}\left(cm\right)\)

nguyen thidiem quynh
Xem chi tiết
Đoàn Đức Hà
20 tháng 6 2021 lúc 17:36

\(NP=4,5+6=10,5\left(cm\right)\)

Áp dụng tích chất đường phân giác: 

\(\frac{MN}{NE}=\frac{MP}{EP}\Leftrightarrow\frac{MN}{4,5}=\frac{MP}{6}\Leftrightarrow MN=\frac{3}{4}MP\).

Áp dụng định lí Pythagore:

\(NP^2=MP^2+MN^2\)

\(\Leftrightarrow10,5^2=MP^2+\left(\frac{3}{4}MP\right)^2\Leftrightarrow MP=8,4\Rightarrow MN=6,3\)

\(MH=\frac{MN.MP}{NP}=\frac{8,4.6,3}{10,5}=5,04\)

\(NH=\frac{MN^2}{NP}=\frac{6,3^2}{10,5}=3,78\)

\(HE=NE-NH=4,5-3,78=0,72\)

\(S_{MHE}=\frac{1}{2}.MH.HE=\frac{1}{2}.0,72.5,04=1,8144\left(cm^2\right)\)

Khách vãng lai đã xóa
Raiden Shogun
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 9 2021 lúc 0:36

b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:

\(MH\cdot MD=MP^2\left(1\right)\)

Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:

\(PH\cdot PN=MP^2\left(2\right)\)

Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)

Nguyễn Bảo Châm
Xem chi tiết
Nguyễn Phương HÀ
12 tháng 8 2016 lúc 22:24

ta sử dụng hệ thức lượng trong tam giác vuông  

\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)

mà MN=3MP/4

they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)

<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)

=> MP=\(4\sqrt{15}\)

bài 10: gống cái trên :

tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)

áp dungnj đl pita go ta có : 

NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)

Menna Brian
Xem chi tiết
Lấp La Lấp Lánh
6 tháng 10 2021 lúc 19:09

Sửa đề: Đường cao MH

Áp dụng HTL:

\(MH^2=NH.HP\)

\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)

\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)