Tìm a để hàm số xác định trên tập K đã chỉ ra:
a) \(y=\frac{2x+1}{x^2-6x+a+2}\) ; K=R
b) \(y=\sqrt{x-a}+\sqrt{2x-a-1}\) ; K=(0;+vô cực)
p/s: giúp 1 câu cũng đc :((
Bài1. cho hàm số: y= k.x+3-2x+k
a) xác định k để hàm số đã cho là hàm số bậc nhất
b) xác định k để hàm số đồng biến trên R
Bài2. cho đường thẳng \(y=\left(2m-3\right)x-\dfrac{1}{2}\) (P) tìm m để đường thẳng D đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{2}{3}\right)\)
Bài 1:
a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)
b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0
hay k>2
Bài 2:
Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:
\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)
\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)
\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)
\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)
hay \(m=\dfrac{1}{3}\)
Tìm a để hàm số xác định trên tập K chỉ ra:
y= \(\frac{2x+1}{x^2-6x+a-2}\); K= R
Để hàm số xác định trên R
\(\Leftrightarrow x^2-6x+a-2=0\) vô nghiệm
\(\Leftrightarrow\Delta'=9-\left(a-2\right)< 0\Leftrightarrow11-a< 0\Rightarrow a>11\)
y= \(\dfrac{mx}{\sqrt{x-m+2}+1}\)
a, Tìm tập xác định của hàm số theo tham số m
b, Tìm m để hàm số có tập xác định trên (0;1)
Bài 1 : Cho hàm số y = 3(2mx - 1) + m + 2 (d)
a. Vẽ đồ thị hàm số với m = \(\dfrac{1}{2}\)
b. Tìm m để hàm số nghịch biến trên tập xác định.
c. Tìm m để (d) vuông góc với đường thẳng (△) : y = 6x + 1
d. Tìm điểm cố định luôn nằm trên đường thẳng (d).
e. Tìm khoảng cách lớn nhất từ gốc tọa độ O đên (d).
Bài 2 : Cho hàm số y = 3m - m - 1 (d)
a. Vẽ đồ thị hàm số với m = -1.
b. Tìm m để hàm số vuông góc với đường thẳng (△) : y = x + 1.
c. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là 2.
d. Tìm điểm cố định luôn nằm trên (d).
e. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất.
Bài 3 : Cho hàm số y = (4m - 3)x + m + 3
a. Vẽ đồ thị hàm số với m = 1.
b. Tìm m để hàm số nghịch biên trên tập xác đinh.
c. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là -4.
d. Tìm điểm cố định luôn nằm trên (d).
e. Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất.
c: Để (d) vuông góc với (Δ) thì \(\left(6m+1\right)\cdot6=-1\)
\(\Leftrightarrow6m+1=-\dfrac{1}{6}\)
hay \(m=-\dfrac{7}{36}\)
1.Tập xác định của hàm số y= ( x2-1)2/3 là
2.hệ số góc của tiếp tuyến tại A (1;0) của đồ thị hàm số y = -x3+3x -1
3.tìm tập xác định của hàm số y= log2021(x-1)
4.bất pt 2x-1<5 có tập nghiệm là
Mong mn chỉ giúp ♡
Cho hai hàm số \(y = f\left( x \right) = \frac{1}{{x - 1}}\) và \(y = g\left( x \right) = \sqrt {4 - x} \).
a) Tìm tập xác định của mỗi hàm số đã cho.
b) Mỗi hàm số trên liên tục trên những khoảng nào? Giải thích.
a) • \(y = f\left( x \right) = \frac{1}{{x - 1}}\)
ĐKXĐ: \(x - 1 \ne 0 \Leftrightarrow x \ne 1\)
Vậy hàm số có tập xác định: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
• \(y = g\left( x \right) = \sqrt {4 - x} \)
ĐKXĐ: \(4 - x \ge 0 \Leftrightarrow x \le 4\)
Vậy hàm số có tập xác định: \(D = \left( { - \infty ;4} \right]\).
b) • Với mọi \({x_0} \in \left( { - \infty ;1} \right)\), ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{x - 1}} = \frac{{\mathop {\lim }\limits_{x \to {x_0}} 1}}{{\mathop {\lim }\limits_{x \to {x_0}} x - \mathop {\lim }\limits_{x \to {x_0}} 1}} = \frac{1}{{{x_0} - 1}} = f\left( {{x_0}} \right)\)
Vậy hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;1} \right)\).
Tương tự ta có hàm số \(y = f\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( {1; + \infty } \right)\).
Ta có: Hàm số không xác định tại điểm \({x_0} = 1\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x - 1}} = - \infty \)
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).
Vậy hàm số \(y = f\left( x \right)\) không liên tục tại điểm \({x_0} = 1\).
• Với mọi \({x_0} \in \left( { - \infty ;4} \right)\), ta có:
\(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {4 - x} = \sqrt {\mathop {\lim }\limits_{x \to {x_0}} 4 - \mathop {\lim }\limits_{x \to {x_0}} x} = \sqrt {4 - {x_0}} = g\left( {{x_0}} \right)\)
Vậy hàm số \(y = g\left( x \right)\) liên tục tại mọi điểm \({x_0} \in \left( { - \infty ;4} \right)\).
Ta có: \(g\left( 4 \right) = \sqrt {4 - 4} = 0\)
\(\mathop {\lim }\limits_{x \to {4^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \sqrt {4 - x} = \sqrt {\mathop {\lim }\limits_{x \to {4^ - }} 4 - \mathop {\lim }\limits_{x \to {4^ - }} x} = \sqrt {4 - 4} = 0 = g\left( 4 \right)\)
Vậy hàm số \(y = g\left( x \right)\) liên tục tại điểm \({x_0} = 4\).
Hàm số không xác định tại mọi \({x_0} \in \left( {4; + \infty } \right)\) nên hàm số \(y = g\left( x \right)\) không liên tục tại mọi điểm \({x_0} \in \left( {4; + \infty } \right)\).
Vậy hàm số \(y = g\left( x \right)\) liên tục trên nửa khoảng \(\left( { - \infty ;4} \right]\).
Cho hàm số y=(k^2-3k)x+1 a) xác định k để hàm số đồng biến trên R b) xác định k để hàm số nghịch biến trên R
a) Để hàm số đồng biến thì k(k-3)>0
\(\Leftrightarrow\left[{}\begin{matrix}k>3\\k< 0\end{matrix}\right.\)
b) Để hàm số nghịch biến thì k(k-3)<0
hay 0<x<3
cho hàm số : y = √x−m+√2x−m−1x−m+2x−m−1 . tìm m để hàm số đã cho xác định trên tập số D và chứa mọi x > 0
Giả thiết của câu hỏi
mọi người giúp em vs ạ !!!!
tìm a để hàm số xác định trên tập K đã chỉ ra :
2x+1
y=------------------- K= R
x^2 - 6x + a -2
x + 2a
y=------------------------ K=(-1 ; 0 )
x - a + 1
Nhập vào các lựa chọn, chèn vào kí tự '#' sau phương án đúng (nếu có). Ấn chuột vào mỗi ô, nhấn Enter để thêm ô, Delete để xóa ô.
Lựa chọn 1