Cho tam giác ABC cân tại A với góc A = 108o. Vẽ các tia phân giác AD và BE (D thuộc BC ; E thuộc AC). Biết BE = 10 cm. Tính AD
bài 4: cho tam giác ABC cân tại A ( góc A nhỏ hơn 90 độ và AB nhỏ hơn BC) kẻ BD là tia phân giác của góc ABC (D thuộc AC ). Trên cạnh BC lấy điểm E sao cho AB = BE
a, vẽ hình
b,chứng minh tam giác ABD= tam giác EBD từ đó suy ra AD=DE
c,so sánh AD và DC
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ và DA=DE
c: DA=DE
DE<DC
=>DA<DC
Cho tam giác ABC cân ở A, AD vuông góc BC ( D thuộc BC). Tia phân giác BE. Tính các góc của tam giác ABC biết BE = 2AD
Cho tam giác ABC cân ở A, AD vuông góc BC ( D thuộc BC). Tia phân giác BE. Tính các góc của tam giác ABC biết BE = 2AD
Cho tam giác ABC cân tại A có góc A = 108o,BC = a, AC = b. Vẽ phía ngoài tam giác ABC vẽ tam giác ABD cân tại A có góc BAD = 36o. Tính chu vi tam giác ABD theo a và b.
Các bạn giúp mình bài này với ạ!
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.
Cho tam giác ABC cân tại A có hai đường phân giác BE và CD (E thuộc AC, D thuộc AB)
a) Chứng minh góc EBC=góc DCB và tam giác DBC= tam giác ECB
b) Qua E vẽ đường thẳng song song với CD cắt tia BC tại điểm F. Chứng minh tam giác BEF cân tại E
c) Chứng minh tam giác DCE= tam giác FEC và BC+DE<2BE.
Giúp mình nha cảm ơn ,mai mình phải nộp bài rồi!
a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
Xét ΔDBC và ΔECB có
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đo: ΔDBC=ΔECB
b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)
nên ΔBEF cân tại E
Cho tam giác ABC vuông tại A có BE là tia phân giác của góc B ( E thuộc AC). Từ E kẻ ED vuông góc với BC tại D.
a) Chứng minh ΔABE = ΔDBE.
b) Chứng minh BE⊥AD
c) Gọi F là giao điểm của tia BA và tia DE. Chứng minh tam giác EFC cân tại E.
help pls
a: Xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔABE=ΔDBE
b: Ta có: ΔABE=ΔDBE
=>BA=BD và EA=ED
Ta có: BA=BD
=>B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
=>E nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
=>BE\(\perp\)AD
c: Xét ΔEAF vuông tại A và ΔEDC vuông tại D có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)(hai góc đối đỉnh)
Do đó: ΔEAF=ΔEDC
=>EF=EC
=>ΔEFC cân tại E
Cho tam giác ABC, các đường phân giác tại B và C cắt nhau tại O. Các đường phân giác ngoài tại đỉnh B và C cắt nhau tại I.
1 . Biết góc BAC =90°. Vẽ tam giác BDC vuông cân tại D( D và A khác phía đối với BC ). CMR AD là tia phân giác của góc BAC
2 . Biết tam giác ABC cân và A =100°. Vẽ tam giác BDC sao cho góc BDC = 80°( D và A khác phía đối với BC ) . CMR DA là tia phân giác của góc BDC
3. Biết góc BAC = 120° . Vẽ các yia phân giác AA', BB',CC'. Tính chu vi tam giác A'B'C' biết A'B' = 20cm, A'C' =21 cm
Cho tam giác abc cân tại A, có góc A = 36 độ. Vẽ tia phân giác BE của góc B( E thuộc AC). So sánh BE với AE và BC
cho tam giác ABC vuông tại A với góc ABC < 30 độ . Vẽ BD là tia phân giác của góc ABC , D thuộc AC . Vẽ DH vuông góc với BC tại H .
a) C/m : AD= DH
b) Hai đường thẳng DH và AB cắt nhau tại E . C/m tam giác BEC cân .
c) Gọi K là trung điểm của đoạn thẳng CE. C/m B,D.K thẳng hàng
d) Hãy so sánh độ dài đoạn thẳng BD và CD
( vẽ hình giúp mik vs )
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: DE=DC
hay ΔDEC cân tại D