Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Tuấn Việt

Cho tam giác ABC cân tại A với góc A = 108o. Vẽ các tia phân giác AD và BE (D thuộc BC ; E thuộc AC). Biết BE = 10 cm. Tính AD

Phương An
10 tháng 10 2016 lúc 21:43

Tam giác ABC cân tại A có:

\(ABC=90^0-\frac{108^0}{2}=90^0-54^0=36^0\)

BE là tia phân giác của ABC

\(ABE=EBC=\frac{ABC}{2}=\frac{36^0}{2}=18^0\)

AD là tia phân giác của BAC

\(BAD=DAC=\frac{BAC}{2}=\frac{108^0}{2}=54^0\)

Tam giác ABE có:

\(ABE+EAB+AEB=180^0\)

\(18^0+108^0+AEB=180^0\)

\(AEB=180^0-126^0\)

\(AEB=54^0\)

AD là tia phân giác của BAC của tam giác ABC cân tại A

=> AD là trung tuyến của tam giác ABC

Trên tia đối của AC, lấy điểm H sao cho A là trung điểm của HC

mà D là trung điểm của BC (AD là trung tuyến của tam giác ABC)

=> AD là đường trung bình của tam giác CBH

=> AD // HB 

=> AHB = EAD (2 góc so le trong)

mà EAD = AEB (= 540)

=> AHB = AEB

=> Tam giác HBE cân tại B

=> HB = BE

mà AD = BH/2 (AD là đường trung bình của tam giác CBH)

=> AD = BE/2 = 10/2 = 5 (cm)


Các câu hỏi tương tự
Đinh Tuấn Việt
Xem chi tiết
Nguyễn Vân Khánh
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết