Ôn tập Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minz Ank

Cho tam giác ABC cân tại A có góc A = 108o,BC  = a, AC = b. Vẽ phía ngoài tam giác ABC vẽ tam giác ABD cân tại A có góc BAD = 36o. Tính chu vi tam giác ABD theo a và b.

Các bạn giúp mình bài này với ạ!

Thanh Hoàng Thanh
6 tháng 12 2021 lúc 10:13

Kẻ  AH \(\perp\) BC.

Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).

=> AH là trung tuyến (Tính chất các đường trong tam giác cân).

=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.

Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.

Mà ^BAD = 36o (gt).

=> ^ABC = ^BAD = 36o.

Mà 2 góc này ở vị trí so le trong.

=> AD // BC (dhnb).

Mà AH \(\perp\) BC (cách vẽ).

=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.

Kẻ MH // DB; M \(\in\) AD. 

Xét tứ giác DMHB có: 

+ MH // DB (cách vẽ).

+ MD // HB (do AD // BC).

=> Tứ giác DMHB là hình bình hành (dhnb). 

=> MH = DB và MD = BH (Tính chất hình bình hành).

Ta có: AD = MD + AM.

Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).

=> AM = b - \(\dfrac{1}{2}\)a.

Xét tam giác AHB vuông tại H có:

AB2 = AH+ BH2 (Định lý Py ta go).

Thay: b2 = AH+ ( \(\dfrac{1}{2}\)a)2.

<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.

<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).

Xét tam giác MAH vuông tại A (^MAH = 90o) có:

\(MH^2=AM^2+AH^2\) (Định lý Py ta go).

Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.

 MH2 = b2  - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.

MH2 = 2b2 - ab.

MH = \(\sqrt{2b^2-ab}\).

Mà MH = BD (cmt).

=> BD = \(\sqrt{2b^2-ab}\).

Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.

 

 


Các câu hỏi tương tự
Huy Dinh
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Hoàng Hạnh Đan
Xem chi tiết
Xuân Mẫn Ngô Ngọc
Xem chi tiết
Quỳnh Mai Nguyễn Thị
Xem chi tiết
Noob gaming
Xem chi tiết
Phạm Linh Nhi
Xem chi tiết
Na Lê
Xem chi tiết