Tìm các số tự nhiên a,b (a,b) biết:
a) ƯCLN(a,b)=12; BCNN(a,b)=240
b) ƯCLN(a,b)=10; BCNN(a,b)=120
Ghi cách giải
(Nâng cao) Tìm số tự nhiên a, b biết:
a. a + b = 192 và ƯCLN (a; b) = 24
b. a . b = 216 và ƯCLN(a; b) = 6
a. (a,b)=(1,7),(2,6),(3,5),(4,4), (5,3),(6,2), (7,1), (0,8), (8,0)
b.(a,b)=(6,36),(12,18),(18,12),(36,6)
Tìm số tự nhiên a, b (a > b) biết:
a) ƯCLN(a,b) = 6 và BCNN(a,b) = 120
b) ƯCLN(a,b) = 5 và BCNN(a,b) = 105
Tìm số tự nhiên a, b (a > b) biết:
a) ƯCLN(a,b) = 6 và BCNN(a,b) = 120
b) ƯCLN(a,b) = 5 và BCNN(a,b) = 105
Lời giải:
a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau
$a>b\Rightarrow x>y$
$BCNN(a,b)=6xy=120$
$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$
$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$
b. Bạn làm tương tự.
Bài 1:
a,Tìm các số tự nhiên a và b biết:a x b=3075 và ƯCLN(a,b)=25
b,Tìm các số tự nhiên a,b biết:a x b=360 và BCNN(a,b)=60
Bài 2 Tìm số nguyên tố n,biết
a,1+2+3+.....+n=300
b,2+4+6+....+2n=210
c,1+3+5+7+......+(2n+1)=225
Tìm hai số tự nhiên a,b biết:
a)ƯCLN(a,b)=6 và a.b=216
b,ƯCLN(a,b)=16 và BCNN(a,b)=240
c)BCNN(a,b)=60 và a.b=180
bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho
Bài 15. Tìm hai số tự nhiên a, b (a > b) biết:
a) a +b = 48 và ƯCLN(a,b) = 6. b) a + b = 30 và ƯCLN(a,b) = 6. c) a. b = 720 và ƯCLN(a, b) = 6 d) a. b = 300 và UCLN(a, b) = 5
Bài 6*. Tìm các số tự nhiên a, b biết rằng:
a) a + b = 120; ƯCLN (a; b) = 12;
b) a . b = 6936; ƯCLN (a; b) = 34;
a: a=108; b=12
a=84; b=36
a=12; b=108
a=36; b=84
Tìm các số tự nhiên (a,b) với a > b biết a + b = 96 và ƯCLN = 12
\(ƯCLN\left(a,b\right)=12\Leftrightarrow\left\{{}\begin{matrix}a=12k\\b=12q\end{matrix}\right.\left(k>q;k,q\in N\text{*}\right)\\ a+b=96\\ \Leftrightarrow12\left(k+q\right)=96\\ \Leftrightarrow k+q=8\)
Mà \(k>q;\left(k,q\right)=1\)
\(\Leftrightarrow\left(k;q\right)\in\left\{\left(7;1\right);\left(5;3\right)\right\}\\ \Leftrightarrow\left(a;b\right)\in\left\{\left(84;12\right);\left(60;36\right)\right\}\)
Tìm hai số tự nhiên a và b biết a > b, a + b = 16 và ƯCLN ( a ,b ) = 4 b) Tìm 2 số tự nhiên a và b biết BCNN ( a, b ) = 180, ƯCLN ( a, b ) =12
tìm các số tự nhiên a và b ( a>b) biết ƯCLN(a,b) =12 ;BCNN(a,b)=240
Ta có a.b = ƯCLN(a;b).BCNN(a;b) = 12.240 = 2880
Lại có ƯCLN(a;b) = 12
=> Đặt a = 12m ; b = 12n (ƯCLN(m;n) = 1 ; m > n)
Khi đó a.b = 2880
<=> 12m.12n = 2880
=> m.n = 20
Lại có ƯCLN(m;n) = 1 ; m > n ta được
m.n = 5.4 = 20.1
Lập bảng xét các trường hợp
m | 20 | 5 |
n | 1 | 4 |
a | 240 | 60 |
b | 12 | 48 |
Vậy các cặp số (a;b) cần tìm là (240;12) ; (60;48)
theo bài ra ta có :
a*b=[a,b]*(a,b)
a*b=240*12
a.b=2880
Vì (a,b)=12 nên a chia hết cho 12 , b chia hết cho 12
suy ra a=12*k,b=12.q (k,q thuộc N*)
ta lại có
a*b=2880
12*k*12*q=2880
144*k*q=2880
k*p=2880/144
k*q=20
vì k,p có vai trò như nhau nên ( k,q)=1
nếu k=4,q=5 thì a=48, b=60
nếu k=1,q=20 thì a =12, b =240
vậy a=48, b=60
a=60,b=48
a=12,b=240
a=240,b=12