Cho tam giác ABC cân tại A có \(\widehat{BAC}=20^o\) và các cạnh AB=AC=a ; BC=b (a,b>0)
Chứng minh \(a^3+b^3=3ab^2\)
Tam giác ABC cân tại A có \(\widehat{BAC}=80^o\), trên hai cạnh BC, AC của tam giác lần lượt lấy hai điểm D, E sao cho \(\widehat{BAD}=50^o,\widehat{ABE}=30^o\). Tính số đo \(\widehat{BED}\).
Cho tam giác ABC cân tại A có \(\widehat {BAC} = 40^\circ \). Hai đường trung trực của hai cạnh AB, AC cắt nhau tại O. Khi đó
A.\(OA = OB = AB\). B.\(OA = OB = OC\). C.\(OB = OC = BC\). D.\(OC = OA = AC\).
Đáp án: B. \(OA = OB = OC\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(\widehat{BAC}=120^o\), \(AB=AC=a\). Tam giác \(SAB\) vuông tại \(B\), tam giác \(SAC\) vuông tại \(C\), góc giữa hai mặt phẳng \(\left(SAB\right)\) và \(\left(ABC\right)\) bằng \(60^o\). Gọi \(H\) là hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left(ABC\right)\). Chứng minh rằng \(HB\) vuông góc \(AB\) và tính thể tích khối chóp \(S.ABC\) theo \(a\)
1) Cho tam giác ABC cân tại đỉnh A qua A vẽ đường thẳng d song song với BC. Trên đường thẳng d và các cạnh AB, AC lần lượt lấy các điểm D, E, F sao cho C và D thuộc cùng một nửa mặt phẳng bờ AB và DE=DF. Chứng minh rằng \(\widehat{AED}\)= \(\widehat{AFD}\)
2) Cho tam giác ABC có \(\widehat{A}=30^o\);\(\widehat{B}=40^o\); AD là đường phân giác. Đường thẳng vuông góc với AD tại A cắt BC tại E. Tính giá trị của CE :(AB+AC-BC)
3) cho tam giác \(\widehat{ABC}=40^o\); \(\widehat{ACB}=30^o\). Bên ngoài tam giác đó dựng tam giác ADC có \(\widehat{ACD}=\widehat{CAD}=50^o\)Chứng minh rằng tam giác BAD cân.
Cho tam giác ABC vuông tại A, lấy các điểm D và E lần lượt trên các cạnh AC và AB sao cho \(\widehat{ABD}=\frac{1}{3}\widehat{ABC};\widehat{ACE}=\frac{1}{3}\widehat{ACB}\). Gọi O là giao điểm của BD và CE. Chứng minh tam giác ODE cân
cho \(\Delta ABC\)cân tại a, kẻ đường cao AH. Gọi O là giao điểm của trung trực cạnh AC với AH
a, Chứng minh \(\Delta AOC\)là tam giác cân tại o
b, lấy E và F theo thứ tự trên các cạnh AB và AC sao cho AE=CF. Chứng minh \(\Delta OAE=\Delta OCF\)
c, chứng minh điểm O cách đều 3 đỉnh của tam giác ABC
d, Chứng minh \(\widehat{BOC}=2\widehat{BAC}\)
Trên một nửa mặt phẳng bờ AB dựng tam giác cân ABC tại A có \(\widehat{BAC=40^o}\)và tam giác đều ABK. Kẻ đường cao AH của tam giác ABC Lấy E,F lần lượt là các điểm thuộc đoạn thẳng AH,AC sao cho \(\widehat{ABE}=\widehat{FBC}=30^o\)
a, Chứng minh FK là trung trực AB
b, Chứng minh AE=AF
cho tam giác ABC cân tại A. \(\widehat{BAC}\)=120\(^0\), AB=a. tính độ dài cạnh BC theo a
\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)
=>BC/sin120=a/sin30=2a
=>BC=a*căn 3
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D sao choAB=BD. Trên tia đối của tia BC lấy điểm E sao cho AC=CE.
a) Chứng minh tam giác ADE cân và DE=AB+AC+BC.
b) Tính các góc của tam giác ADE nếu biết \(\widehat{BAC}=32^O\)
Ta thấy AB = BD (GT) ; AC=CE (GT)
Mà AB = AC ( do tam gaics ABC cân tại A)
Nên BD=CE
Ta thấy ^DBA = 180 dộ - ^ABC
^ECA = 180 độ - ^ACB
mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA
Xét tam giác ABD và tam giác ACE có:
AB = AC
^BDA = ^ECA (cmt)
BD = CE ( cmt )
suy ra tam giác ABD = tam giác ACE (c.g.c)
Suy ra ^D = ^ E ( 2 cạnh tương ứng)
Suy ra tam giac ADE cân tại A
+, ta thấy DE = BD + BC + CE
MÀ BD =AB ( GT ); CE= AC (GT)
Suy ra DE = AB+ BC+AC
b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180
32 + ^ABC + ^ ACB =180
^ABC + ^ACB = 180-32=158
Suy ra ^ABC = ^ ACB = 158 :2 = 79
Mà ^ABC là góc ngoài của tam giac ABD cân tại b
Nên ^D=79:2=39,5
Suy ra D =^E= 39,5( tam giác ADE cân)
SUY ra DAC= 180-39,5-39,5=101
cho tam giác ABC cân tại A (\(\widehat{A}< 90^0\)). vẽ đường tròn đường kính AB căt sBC tại D, cắt AC tại E. cmr
a.tam giác DBE cân
b.\(\widehat{CBE}=\dfrac{1}{2}\widehat{BAC}\)