1) Cho tam giác ABC cân tại A có tia phân giác giữa góc B và góc C cắt AC ; AB tại D và E.BC cắt CE tại I .
a) Nếu góc A=80^0 thì góc BIC = bao nhiêu độ
b) CMR tam giác BIC cân .
vẽ hình nha ; mk ko bk vẽ hình
Bài 1. Cho tam giác ABC có A= 80◦ và 2B = 3C. a) Tính các góc B và C. b) Tia phân giác của góc B cắt AC tại D. Đường thẳng qua A song song với BD cắt tia CB tại E. Chứng minh rằng tam giác ABE cân. c) Tia phân giác của góc ABE cắt AE tại F. Chứng minh rằng BF là đường trung trực của AE.
a: \(\widehat{B}=60^0;\widehat{C}=40^0\)
cho tam giác ABC cân tại A, tia phân giác của góc B cắt AC tại F, tia phân giác góc C cắt AB tại E. Chứng minh: a) góc ABF = góc ACE b) tam giác AEF cân c) gọi I là giao điểm của BF và CE.Chứng minh: tam giác IBC và IEF cân
help câu này với ạ
a: góc ABF=1/2*góc ABC
góc ACE=1/2*góc ACB
mà góc ACB=góc ABC
nên góc ABF=góc ACE
b: Xét ΔABF và ΔACE có
góc ABF=góc ACE
AB=AC
góc BAF chung
=>ΔABF=ΔACE
=>AF=AE
=>ΔAFE cân tại A
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
IB+IF=BF
IC+IE=CE
mà BF=CE và IB=IC
nên IF=IE
=>ΔIFE cân tại I
cho tam giác ABC cân tại A, tia phân giác của góc B cắt AC tại F, tia phân giác góc C cắt AB tại E. Chứng minh: a) góc ABF = góc ACE b) tam giác AEF cân c) gọi I là giao điểm của BF và CE.Chứng minh: tam giác IBC và IEF cân
Giúp mình với ạ
a: góc ABF=1/2*góc ABC
góc ACE=1/2*góc ACB
mà góc ACB=góc ABC
nên góc ABF=góc ACE
b: Xét ΔABF và ΔACE có
góc ABF=góc ACE
AB=AC
góc BAF chung
=>ΔABF=ΔACE
=>AF=AE
=>ΔAFE cân tại A
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
IB+IF=BF
IC+IE=CE
mà BF=CE và IB=IC
nên IF=IE
=>ΔIFE cân tại I
1, Cho △ABC nhọn, dựng ở phía ngoài △ABC hai tam giác vuông cân: △ABE và △ACD. CMR: EC=BD; EC⊥BD
2, Cho △ABC có góc A=60 độ. Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E. các tia phân giác đó cắt nhau tại I. CM: ID=IE
CÁC BẠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP !!!!!!!!!!!
Cho tam giác ABC cân tại A Tia phân giác góc B cắt cạnh AC tại D, tia phân giác góc C cắt cạnh AB tại E. Chứng minh tam giác ADE cân.
Chứng minh được tam giác ADB = tam giác AEC (g-c-g) => AD = AE, từ đó tam giác ADE cân tại A.
Cho tam giác ABC cân tại A Tia phân giác góc B cắt cạnh AC tại D, tia phân giác góc C cắt cạnh AB tại E. Chứng minh tam giác ADE cân
Cho tam giác ABC vuông cân tại đỉnh A, các tia phân giác trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc B của tam giác ABC cắt AC tại F
a) Góc FBO = 90 độ
b) DF là tia phân giác góc D của tam giác ADB
c) D , E , F thẳng hàng
Cho tam giác ABC cân tại A. Tia phân giác của góc B cắt cạnh AC tại D, tia phân giác của góc c cắt cạnh AB tại E. Chứng minh tam giác ABC cân
Cho tam giác ABC có AH vuông góc với BC và góc BAH = 2 lần góc C. Tia phân giác của góc B cắt AC tại E
a, Tia phân giác góc BAH cắt BE tại I. CMR : Tam giác AIE vuông cân
b, CMR HE là phân giác góc AHC
a có: AH vuông góc BC suy ra hình tam giác AHC vuông tại H, hình tam giác AHB vuông tại H
=> \widehat{C}+\widehat{HAC}=90^o ; \widehat{ABH}+\widehat{BAH}=90^o Có: AI là phân giác \widehat{BAH}nên \widehat{IAH}= \widehat{IAB}=\frac{1}{2}\widehat{BAH}=\widehat{C}
[ vì theo giả thiết có \widehat{BAH}=2\widehat{C}BAH=2C]
Suy ra \widehat{IAH}+\widehat{HAC}=90^o =>\widehat{IAC}=90^o hay \widehat{IAE}=90^o=>\Delta IAE=>ΔIAEvuông tại A [1]
Lại có \widehat{AIE}=\widehat{IAB}+\widehat{IBA}A[góc ngoài tại đỉnh I của \Delta ABIΔABI]
Mà BE là phân giác \widehat{ABH}\Rightarrow\widehat{IBA}=\frac{1}{2}\widehat{ABH}ABH
Suy ra: \widehat{AIE}=\frac{1}{2}\left[\widehat{BAH}+\widehat{ABH}\right]=\frac{1}{2}.90^o=45^oA[2]
Từ 1 và 2 suy ra \Delta AIE vuông cân tại A
Suy ra AE là phân giác ngoài của \Delta ABH tại A,BE là phân giác trong tại B của \Delta ABH
=> HE là phân giác ngoài tại H của \Delta BAH
=> HE là phân giác \widehat{AHC}
Vậy ta có điều phải chứng minh