Cho tam giác ABC vuông xuân tại đỉnh A, các tia phân giác trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc B của tam giác ABC cắt AC tại F a) Góc FBO = 90 độ b)DF là tia phân giác góc D của tam giác ADB c) D , E , F thẳng hàng
Cho tam giác ABC vuông xuân tại đỉnh A, các tia phân giác trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc B của tam giác ABC cắt AC tại F
a) Góc FBO = 90 độ
b)DF là tia phân giác góc D của tam giác ADB
c) D , E , F thẳng hàng
Cho tam giác ABC vuông cân tại đỉnh A, các tia phân giác góc trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác góc ngoài góc B của tam giác ABC cắt AC tại F. Chứng minh
a) góc FBO=90 độ
b) DF là tia phân giác của góc D của tam giác ABC
c) D,E,F thằng hàng
Cho tam giác ABC vuông cân tại đỉnh A, các tia phân giác trong AD và CE của góc A và góc C cắt nhau tại O . Đường phân giác ngoài góc B của tam giác ABC cắt AC tại F . Chứng minh :
a) Góc FBO = 90 độ
b) DF là tia phân giác của góc D của tam giác ABD
c) D,E,F thẳng hàng
cho tam giác ABC vuông cân tại A, các tia phân giav trong AD và CE của góc A và góc C cắt nhau tại O. Đường phân giác nfgoai của góc B câu tam giác cắt AC tại F.CM
a)goc FBO=90 do
b)DF la tia phan giac cua goc D cua tam giac ABD
D,E,F thang hang
bài 1:cho tam giác ABC,2 trung tuyến BM và CN cắt nhau tại G. nối dài bm một đoạn ME=GM và nối CN một đoạn NF=NG. chứng minh:
a; BF=CE=AG b; BF //CE c; EF//BC
bài 2: cho tam giác ABC vuông cân đỉnh A, M là trung điểm của BC. Trên cạnh BC lấy điểm D tùy ý ( D khác M). Từ B,C hạ BE, CF vuông góc với AD. Chứng minh:
a;tam giác AEB=AFC b; tam giác AME=CME c;tam giác MEF vuông cân
bài 3:cho tam giác ABC có góc A bằng 120 độ, các tia phân giác của góc A và C là AD, CE cắt nhau tại O. đường phân giác góc ngoài B của tam giác ABC cắt AC tại F. chứng minh:
a; góc FBO=90 độ b; DF là tia phân giác của góc D của tam giác ABD c; D,E,F thẳng hàng
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
cho tam giác ABC có góc A = 120 độ. Các đường phân giác AD và CE cắt nhau tại O . Đường thẳng chuwas tia phân giác ngoài tại đỉnh B của tam giác ABC cắt đường thẳng tại F. Chứng mình Bo vuông góc với BF và DE là tia phân giác của góc HDB
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân