Tìm GTLL của biểu thức;
A=(x-1)(x-3)+11
giúp mình với mai mình kt rồi iiiii
Tìm GTLL của biểu thức A = 1,5 + /2+x/
Tìm gtll và gtnn của biểu thức \(\frac{x}{x+\sqrt{x}+1}\)
Tìm GTLL của biểu thức :
P= 2x^2-2x+5/x^2-4x+4
\(P=\dfrac{2x^2-2x+5}{x^2-4x+4}=\dfrac{x^2-4x+4+x^2+2x+1}{x^2-4x+4}=1+\dfrac{\left(x+1\right)^2}{\left(x-2\right)^2}\)Do : \(\dfrac{\left(x+1\right)^2}{\left(x-2\right)^2}\) ≥ 0 ∀x
⇒ \(\dfrac{\left(x+1\right)^2}{\left(x-2\right)^2}\) + 1 ≥ 1
⇒ \(P_{Min}=1\) ⇔ x = - 1
P/s : Day la tim GTNN nha
tìm GTLL của biểu thức A=\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
GIẢI CHI TIẾT GIÚP MK NHA
ta có \(A=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
\(=\sqrt{\frac{1}{x}-\frac{1}{x^2}}+\sqrt{\frac{1}{y}-\frac{2}{y^2}}+\sqrt{\frac{1}{z}-\frac{3}{x^2}}=\sqrt{\frac{1}{4}-\left(\frac{1}{x^2}-2.\frac{1}{2}x+\frac{1}{4}\right)}+\sqrt{\frac{1}{8}-\left(\left(\sqrt{2}y\right)^2-2.\frac{\sqrt{2}}{2\sqrt{2}}x+\frac{1}{8}\right)}+\sqrt{\frac{1}{2}-\left(\left(\sqrt{3}z\right)^2-\frac{1}{z}+\frac{1}{12}\right)}\)
\(=\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}+\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}+\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\)
ta có \(\sqrt{\frac{1}{4}-\left(\frac{1}{x}-\frac{1}{2}\right)^2}\le\frac{1}{2}\) ; \(\sqrt{\frac{1}{8}-\left(\frac{\sqrt{2}}{y}-\frac{1}{2\sqrt{2}}\right)^2}\le\frac{1}{2\sqrt{2}}\); \(\sqrt{\frac{1}{12}-\left(\frac{\sqrt{3}}{z}-\frac{1}{2\sqrt{3}}\right)^2}\le\frac{1}{2\sqrt{3}}\)
vậy giá trị lớn nhất của A =\(\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\) khi x=; y=4;z=6
Tính GTLL của đơn thức xy biết x+y=2
Ta có BĐT \(x^2+y^2\ge2xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)
Đẳng thức xảy ra khi \(x-y=0\Leftrightarrow x=y\)
Suy ra \(x+y\ge2\sqrt{xy}\Leftrightarrow2\ge2\sqrt{xy}\Leftrightarrow1\ge xy\)
Đẳng thức xảy ra khi \(x=y=1\)
Vậy GTLN của đơn thức \(xy=1\) khi \(x=y=1\)
B1Tìm GTLN
a) 2+|x+3|
b) 3/2+|2x-1|
B2 Cho biểu thức A=3|a|+2/4|a|-5
Tìm a thuộc Z để a đạt GTLN, tìm GTLN đó
P/s: GTLL: GIÁ TRỊ LỚN NHẤT
GTNN: GIÁ TRỊ NHỎ NHẤT
Ai làm được thanh kiu
\(a)A=2+|x+3|\)
Vì \(|x+3|\ge0\)\(\forall x\)
\(\Rightarrow2+|x+3|\ge2\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy \(Max_A=2\Leftrightarrow x=-3\)
\(b)B=\frac{3}{2}+|2x-1|\)
Vì \(|2x-1|\ge0\)\(\forall x\)
\(\Rightarrow\frac{3}{2}+|2x-1|\ge\frac{3}{2}\)\(\forall x\)
Dấu "=" xảy ra:
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Max_B=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)
Tìm GTLL và GTNN của hàm số f(x)= (x+3)(5-x) biết -3≤x≤5
Tìm GTLL: P=\(\dfrac{x+2\sqrt{x}+2}{-\sqrt{x}}\)
Lời giải:
ĐKXĐ: $x>0$
Áp dụng BĐT Cô-si:
$x+2\geq 2\sqrt{2x}$
$\Rightarrow x+2\sqrt{x}+2\geq \sqrt{x}(2+2\sqrt{2})$
$\Rightarrow \frac{x+2\sqrt{x}+2}{\sqrt{x}}\geq 2+2\sqrt{2}$
$\Rightarrow P=-\frac{x+2\sqrt{x}+2}{\sqrt{x}}\leq -(2+2\sqrt{2})$
Vậy $P_{\max}=-(2+2\sqrt{2})$ khi $x=2$
Tìm GTLL của :
\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-|xy-90|\)
\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-3\left(2x-3y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2.\left(1-3\right)-\left|xy-90\right|\)
\(\Leftrightarrow P=-4\left(2x-5y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=-\left[4\left(2x-5y\right)^2-\left|xy-90\right|\right]\)
Ta có \(\hept{\begin{cases}\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow\hept{\begin{cases}4\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow P=-\left[4\left(2x-5y\right)^2+\left|xy-90\right|\right]\le0\forall xy\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5y\right)^2=0\\xy-90=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-5y=0\\xy=90\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)
\(\Leftrightarrow2xy=5y^2\)\(\Leftrightarrow2.90=5y^2\Leftrightarrow5y^2=180\Leftrightarrow y^2=36\)
\(\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=90:6=15\\x=90:\left(-6\right)=-15\end{cases}}\)
Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\) hoặc x=-15; y=-6
Có 1 vài chỗ ko ok cho lắm bạn thông cảm
Học tốt
Trả lời :
Bn tham khảo link này :
https://olm.vn/hoi-dap/detail/216085412740.html
( Vào thống kê hỏi đáp của mk sẽ thấy )