Ta có BĐT \(x^2+y^2\ge2xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)
Đẳng thức xảy ra khi \(x-y=0\Leftrightarrow x=y\)
Suy ra \(x+y\ge2\sqrt{xy}\Leftrightarrow2\ge2\sqrt{xy}\Leftrightarrow1\ge xy\)
Đẳng thức xảy ra khi \(x=y=1\)
Vậy GTLN của đơn thức \(xy=1\) khi \(x=y=1\)