Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Thi Khanh Huyen
Xem chi tiết
Quang Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 1:07

 a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM Vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF

=>ΔAFE cân tại A

c: AE=AF

ME=MF

=>AM là trung trực của FE

d: Xét ΔEFI có

EM là trung tuyến

EM=FI/2

=>ΔEFI vuông tại E

=>EF vuông góc FI

=>FI//AM

Quốc Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 20:11

a: Xét tứ giác OMAN có 

\(\widehat{OMA}+\widehat{ONA}=180^0\)

Do đó: OMAN là tứ giác nội tiếp

nguyentruongan
Xem chi tiết
Nguyễn Đức anh
9 tháng 12 2016 lúc 21:44

a, xét tam giác AMB và tam giác AMC có :

AB=AC (gt)

MB=MC (gt)

AM là cạnh chung

suy ra: tam giác AMB = tam giác AMC (c.c.c)

b,Vì tam giác AMB = tam giác AMC ( câu a)

suy ra : góc B =góc C ( 2 góc tương ứng )

xét tam giác MBE và tam giác MCF có:

M1=M2 ( đối đỉnh )

B =C

MB=MC ( gt)

suy ra :tam giác MBE = tam giác MCF (g.c.g)

vì tam giác MBE = tam giác MCF (chứng minh trên)

ME=MF (2 cạch tương ứng )

xét tam giác AEM và tam giác AFM có :

E1=F1

AM là cạnh chung

ME=MF

suy ra : tam giác AEM = tam giác AFM (c.g.c)

vì tam giác AEM = tam giác AFM ( chứng minh trên)

suy ra :AE=AF

c, gọi điểm cắt nhau của EF và AM 

Vì tam giác AMB = tam giác AMC (câu b)

suy ra : góc A1 = góc A2 ( 2 góc tương ứng ); góc M1 = góc M2 ( 2 góc tương ứng)

xét tam giác AEH và tam giác AFH có :

A1=A2 

AE=AF

AH là điểm chung 

suy ra : tam giác AEH = tam giác AFH (c.g.c)

suy ra góc H1= góc H2 ( 2 góc tương ứng)

mà H1+H2=180 (2 góc kề bù)

suy ra : H1=H2=90

suy ra AM vuông góc với EF

mà M1+M2=180

suy ra M1=M2=90

suy ra AM vuông góc với BC

     mà AM vuông góc với EF

suy ra EF song song với BC ( 2 đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3 thì chúng song song với nhau )

d, Ta có : AMB = NMC ( đối đỉnh )

+) AMB+AMC= 180 ( 2 góc kề bù )

mà AMC=NMC 

suy ra AMB+NMC =180 (3)

mà     AMB+NMC = AMN (4)

Từ (3),(4) suy ra : 3 điểm A,M,N thẳng hàng 

         

Nguyễn Đức anh
9 tháng 12 2016 lúc 20:58

1, xét tam giác AMB và tam giác AMC có:

AB=AC (gt)

MB=MC (gt)

nguyễn trung hiếu
Xem chi tiết
Kinomoto Sakura
12 tháng 5 2021 lúc 15:46

a) Xét ΔABM và ΔACM có:
AB=AC ( ΔABC cân tại A)
Cạnh AM chung  

MB=MC (gt)

⇒ ΔABM=ΔACM (c.c.c)

Vậy ΔABM=ΔACM
b) Vì ΔABM=ΔACM (cmt)
⇒ ∠AMB=∠AMC (2 góc tương ứng)
Ta có:∠AMB+∠AMC=180 ( 2 góc kề bù)
⇒ AMB=AMC=1800/2=900
⇒ AM⊥BC

Vậy AM⊥BC

c) Vì MK⊥AC (gt)

⇒ ∠MKA=∠MKC=900

Vì MH⊥AB (gt)

⇒ ∠MHA=∠MHB=900

Xét ΔHBM và ΔKCM có:

∠MHB∠=MKC=900

MB=MC (gt)

∠HMB∠=KMC (đối đỉnh)

⇒ ΔHBM = ΔKCM (cạnh huyền - góc nhọn)

⇒ BH=CK (2 cạnh tương ứng)

Vậy BH=CK

Mik mỏi tay lám rùi bạn tự làm phần sau nhé

 

nguyễn an phát
12 tháng 5 2021 lúc 16:21

xét ΔABM và ΔACM có:

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACM}\)(ΔABC cân tại A)

BM=CM(M là trung điểm của BC)

⇒ΔABM=ΔACM(c-g-c)

\(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)(1)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)(2)

từ (1)và(2)⇒\(\widehat{ABM}=\widehat{ACM}=\dfrac{180^o}{2}=90^o\)

hay AM⊥BC(đ.p.ch/m)

xét 2 tam giác vuông HBM và KCM có

MC=MB(M là trung điểm của BC)

\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)

⇒ΔHBM=ΔKCM(c.huyền.g.nhọn)

⇒BH=CK(2 cạnh tương ứng)

vì BP⊥AC và MK⊥AC⇒BP//MK

vì ΔHBM=ΔKCM nên 

\(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng)

Mà \(\widehat{KMC}=\widehat{PBM}\)(2 góc đồng vị)

⇒ΔIBM là tam giác cân(đ.p.ch/m)

vì BP⊥AC và MK⊥AC⇒BP//MK(đ.p.ch/m)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 5 2018 lúc 2:09

a) Xét ΔAEB và ΔAFC có:

∠AEB = ∠AFC = 90o (gt)

∠A chung

Vậy ΔAEB ∼ ΔAFC (g.g)

b) Xét ΔAEF và ΔABC có

∠A chung

AF.AB = AE.AC (Cmt)

⇒ ΔAEF ∼ ΔABC (c.g.c)

⇒ ∠AEF = ∠ABC

c) ΔAEF ∼ ΔABC (cmt)

Anh Quan
Xem chi tiết
Etermintrude💫
5 tháng 5 2022 lúc 16:11

undefined
CHÚC EM HỌC TỐT NHÉ banh

Nguyễn Văn Hậu
Xem chi tiết
giang đoàn
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 14:39

a) Xét ΔBDA vuông tại A và ΔBDE vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác)

Do đó: ΔBDA=ΔBDE(cạnh huyền-góc nhọn)

b) Ta có: ΔBDA=ΔBDE(cmt)

nên BA=BE(hai cạnh tương ứng) và DA=DE(Hai cạnh tương ứng)

Ta có: BA=BE(cmt)

nên B nằm trên đường trung trực của AE(1)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

Trần Ngyễn Yến Vy
Xem chi tiết
Nguyễn Quang Hà
19 tháng 8 2020 lúc 14:05

chs ff koko

Khách vãng lai đã xóa