Cho \(\Delta ABC\)vuông tại A. \(\dfrac{AB}{AC}=\dfrac{3}{4}\); đường cao AH=18. Tính chu vi \(\Delta ABC\)
Cho \(\Delta ABC\) vuông tại A, có \(\dfrac{AB}{AC}=\dfrac{4}{5}\) và đường cao AH = 12cm. Tính độ dài đoạn thẳng BH
cho ΔABC vuông tại A, có AB = 6cm, AC = 8 cm. tia phân giác góc A cắt BC tại D, từ D kẻ DE ⊥ AC (E ∈ AC)
a) tính tỷ số: \(\dfrac{BD}{DC}\), độ dài BD
b) tính tỷ số: \(\dfrac{S\Delta ABC}{S\Delta EDC}\)
a:BC=căn 6^2+8^2=10cm
Xét ΔABC có AD là phân giác
nên BD/DC=AB/AC
=>BD/DC=3/4
=>BD/3=CD/4=(BD+CD)/(3+4)=10/7
=>BD=30/7cm
b: Xét ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
=>S CED/S CAB=(CD/CB)^2=(4/7)^2=16/49
Cho \(\Delta\)ABC vuông tại A, AB = 12cm , AC = 16cm, đường cao AH. Qua B kẻ đường thẳng d vuông góc AB, tia phân giác góc BAC cắt BC tại M, cắt đường thẳng d tại N. Vẽ hình. Chứng minh ΔBMN ~ ΔAMC và \(\dfrac{AB}{AC}\) = \(\dfrac{MN}{AM}\)
Xét ΔBMN và ΔCMA có
góc BMN=góc AMC
góc MNB=góc MAC
=>ΔBMN đồng dạng với ΔCMA
cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{3}{4}\)và AB+AC=21cm.
a) Tính AB, AC, BC
b) Tính AH, BH, CH
a, Ta có : \(\dfrac{AB}{AC}=\dfrac{3}{4}=>\dfrac{3}{4}AC=AB\)
AB + AC = 21
3/4 AC + AC = 21
7/4 AC = 21
AC = 12 ( cm )
AB = 21 - 12 = 9 ( cm )
Áp dụng định lí Pytago vào tam giác , ta có :
BC ^ 2 = AB ^ 2 + AC ^ 2 = 12^2 + 9^2 = 225
-> BC = 15 ( cm )
b, Áp dụng hệ thức lượng :
AH . BC = AB . AC
-> AH = AB.AC / BC = \(\dfrac{9.12}{15}=7,2\left(cm\right)\)
AB^2 = BH . BC
-> BH = AB^2 / BC = \(\dfrac{81}{15}=5,4\left(cm\right)\)
AC^2 = HC . BC
-> HC = AC^2 / BC = \(\dfrac{144}{15}=9,6\left(cm\right)\)
Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}\)=\(\dfrac{4}{3}\), đường cao AH=3,6 cm. Tính chu vi tam giác ABC
Có:
\(\dfrac{AB}{AC}=\dfrac{4}{3}=\dfrac{4k}{3k}\) (k là số bất kì)
\(\Rightarrow AB=4k,AC=3k\)
Áp dụng đl pytago vào tam giác ABC được:
\(BC^2=AB^2+AC^2=\left(4k\right)^2+\left(3k\right)^2=16k^2+9k^2=25k^2=\left(5k\right)^2\\ \Rightarrow BC=5k\left(cm\right)\)
Theo hệ thức lượng, có:
\(AH.BC=AB.AC\\ \Leftrightarrow3,6.5k=4k.3k\\ \Leftrightarrow18=12k\\ \Rightarrow k=\dfrac{18}{12}=\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=4k=4.\dfrac{3}{2}=6\left(cm\right)\\AC=3k=3.\dfrac{3}{2}=\dfrac{9}{2}=4,5\left(cm\right)\\BC=5k=5.\dfrac{3}{2}=\dfrac{15}{2}=7,5\left(cm\right)\end{matrix}\right.\)
\(\Rightarrow P_{ABC}=AB+AC+BC=6+4,5+7,5=18\left(cm\right)\)
cho tam giác ABC vuông tại A , trung tuyến AD , trọng tâm G .
a) cho biết \(\dfrac{AB}{AC}\)\(=\dfrac{3}{4}\) và AD=5cm . tính S\(\Delta ABC\)
b) qua G kẻ đường thẳng cắt AB ,AC làn lượt tại M,N . cmr \(\dfrac{AB}{AM}+\dfrac{AC}{AN}=3\)
cho ΔABC vuông tại A có \(\dfrac{AB}{AC}\) = \(\dfrac{3}{4}\) , đường cao AH=15cm. khi đó CH=?
Ta có \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)
Ta lại có △ABC vuông tại A đường cao AH\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{225}=\dfrac{16}{9AC^2}+\dfrac{1}{AC^2}=\dfrac{25}{9AC^2}\Leftrightarrow AC^2=625\Leftrightarrow AC=25\left(cm\right)\)
Ta có △ACH vuông tại H\(\Rightarrow AC^2=AH^2+CH^2\Rightarrow CH^2=AC^2-AH^2=25^2-15^2=400\Rightarrow CH=20\left(cm\right)\)
Cho tam giác ABC. Chứng minh rằng:
a) \(S_{\Delta ABC}=\dfrac{1}{2}\sqrt{AB^2.AC^2-\left(\overrightarrow{AB}.\overrightarrow{AC}\right)^2}\)
b) \(b+c=2a\Leftrightarrow\dfrac{2}{h_a}=\dfrac{1}{h_b}+\dfrac{1}{h_c}\)
c) Góc A vuông \(\Leftrightarrow m_b^2+m_c^2=5m_a^2\)
Cho ΔABC, I nằm trong ΔABC. Tia IA, IB, IC cắt BC,AB,AC tại D,E,F. Qua A kẻ đường thẳng // BC cắt IB tại H, cắt IC tại K. CMR:\(\dfrac{AF}{BF}+\dfrac{AE}{CE}=\dfrac{AI}{ID}\)