Cho tam giác ABC cân tại A, \(AI\perp BC\) tại I. Lấy E \(\in AB\) ; \(F\in AC\) sao cho AE = AF. Gọi M là giao điểm của EF và AI. C/minh: BE + EM = MF + FC
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Câu 1 : Cho tam giác ABC đều . Kẻ \(AH\perp BC\left(H\in BC\right)\). TIa phân giác của góc ACB cắt AH tại E . Vẽ \(EK\perp AC\left(K\in AC\right)\). Lấy I là trung điểm của AB . CMR :
a) tam giác EHC = tam giác EKC
b) tam giác CHK đều
c) tam giác AKH cân
d) Ba điểm C,E,I thẳng hàng
Câu 1 : Cho tam giác ABC đều . Kẻ \(AH\perp BC\left(H\in BC\right)\). TIa phân giác của góc ACB cắt AH tại E . Vẽ \(EK\perp AC\left(K\in AC\right)\). Lấy I là trung điểm của AB . CMR :
a) tam giác EHC = tam giác EKC
b) tam giác CHK đều
c) tam giác AKH cân
d) Ba điểm C,E,I thẳng hàng
Bài 1: Cho tam giác ABC cân tại A. Lấy D, E thuộc BC sao cho BD = CF. CMR: tam giác ABC cân tại A.
Bài 2: Tam giác ABC cân tại A. Lấy M thuộc AB, N thuộc AC sao cho AM = AN.
a) CMR: MN//BC.
b) Cho CM cắt BN tại I. CMR: IB = IC.
Bài 3: Tam giác ABC cân tại A. Lấy M thuộc BC. Vẽ MK//AB (K thuộc AC). CMR: MK = KC.
Cho tam giác ABC cân tại A. Kẻ AI vuông góc BC tại I(I thuộc BC). Lấy E thuộc AB và E thuộc AC sao cho AE=EF
a/ Chứng minh BI=CI
b/ Tam giác IEF cân
c/ EF//BC
Cứu em nha m.n!
Anh không vẽ lại hình nha.
a,
Vì tam giác ABC cân tại A
Mặt khác AI là đường cao của BC
=>AI cũng là đường trung tuyến của BC
=>I là trung điểm của BC
=>IB=IC
b,Xét tam giác EIB và tam giác FIC có:
IB=IC(CMT)
góc B=góc C(ABC cân tại A)
EB=FC(vi AE=AF)
c,
Ta có:
EF=AF
AB=AC(ABC cân tại A)
=>AE/EB=AF/AC
=>EF//BC(định lý talet)
Tích anh nha Giang
a) xét tam giac ABI và tam giác ACI
AB=AC(vì tam giác ABI=ACI)
góc B=C(vì tam giác ABC cân tại A)
AI chung
do đó tam giác ABI=ACI(c-g-c)
=>BI=CI
Cho tam giác ABC cân tại A trên AB lấy D trên AC lấy Éao cho BD=CE
a)c/m DE//BC
b)c/m tam giác ABE=tam giác ACD
c)c/m tam giác BID = tam giác CIE (BE giao CD tại I )
d)c/m AI là tia phân giác BAC
e)c/m AI vuông BC
a) Ta có : BD=CE (đề bài)
mà AB=AD+BD; AC=AE+CE; AB=AC (Δ ABC cân tại A)
⇒ AD=AE
⇒ Δ ADE là Δ cân tại A
⇒ Góc ADE = Góc AED
\(\Rightarrow\widehat{DAE}+\widehat{2ADE}=180^O\)
mà \(\widehat{BAC}+\widehat{2ABC}=180^O\) (Δ ABC cân tại A)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\) ở vị trí đồng vị
Tương tự ta CM \(\widehat{AED}=\widehat{ACB}\) cũng ở vị trí đồng vị
\(\Rightarrow DE//BC\)
b) Xét Δ ABE và Δ ACD ta có :
AB=AC (Δ ABC cân tại A)
Góc A chung
AD=AE (cmt)
⇒ Δ ABE = Δ ACD (cạnh, góc, cạnh)
c) Ta có DE song song BC (cmt)
mà Góc DBC = Góc ECA (Δ ABC cân tại A)
⇒ BDEC là hình thang cân
Xét Δ BID và Δ CIE ta có :
\(\widehat{BDC}=\widehat{DCE}\) (đồng vị)
BD=CE (đề bàI)
BE=CD (BDEC là hình thang cân)
⇒ Δ BID = Δ CIE (cạnh, góc, cạnh)
d) Ta có: AD=AE (cmt)
mà DI=IE (Δ BID = Δ CIE)
⇒ AI là đường trung trực của DE
mà Δ ADE cân tại A (cmt)
⇒ AI là tia phân giác góc BAC
e) Ta có : Δ ABC cân tại A (đề bài)
mà AI là tia phân giác góc BAC (cmt)
⇒ AI là đường cao
⇒ AI vuông góc BC.
Cho tam giác ABC cân tại A. Kẻ AI vuông góc với BC tại I (I thuộc BC). lấy điểm E thuộc AB và điểm F thuộc AC sao cho AE=AF.Chứng minh rằng:
a. BI=CI
b.TAM GIÁC IEF LÀ TAM GIÁC CÂN
c. EF song song với BC
Chứng minh câu a
Xét tam giác ABI và tam giác ACI có:
AI cạnh chung
AB = AC ( tam giác ABC cân tại A )
Suy ra tam giác ABI = tam giác ACI ( c-g-c )
Suy ra BI = CI
b, xét tam giác AFI và tam giác AEI có : AI chung
FA = AE (gt)
^FAI = ^EAI do tam giác CAI = tam giác BAI (câu a)
=> tam giác AFI = tam giác AEI (c-g-c)
=> FI = EI
=> tam giác EFI cân tại I
câu 7. Cho tam giác ABC cân tại A ta có AM là đường phân giác .
a) chứng minh \(\Delta\) ABM=\(\perp\) ACM
b)AM\(\perp\)BC.
c) từ B kẻ đường thẳng vuông góc với AB cắt đường thẳng AM tại D. TRên AM lấy E sao cho ME=MD. chứng minh CE\(\perp\)AB
a) Xét △ABM và △ACM, có:
+ AB = AC
+ Góc BAM = góc CAM (AM là đường phân giác của △ABC)
+ AM cạnh chung
Vậy △ABM = △ACM (c-g-c)
b) Vì △ABM = △ACM
=> Góc AMB = góc AMC
Ta có: góc AMB + AMC = 1800
=> 1800 = 2AMB
AMB = \(\dfrac{180^0}{2}\) = 900
Vì AMB = AMC = 900
Suy ra: AM ⊥ BC
Vậy AM ⊥ BC
Câu c không biết làm nha bạn.
Cho tam giác ABC vuông tại A(AC> AB).Kẻ AH\(\perp\)BC tại H.Trên tia HC lấy điểm E sao cho HE=AH.Kẻ Ex\(\perp\)BC cắt AC tại F . Chứng minh a)Tam giác ABF vuông cân
b)Gọi M là trung điểm của BF và kẻ FK\(\perp\)AH tại K.Chứng minh tam giác KMH vuông cân.
Cho tam giác ABC cân tại A. Trên cạnh BC lấy D, E (D nằm giữa B và E) sao cho BD=CE. Vẽ DM\(\perp\)AB tại M, EN\(\perp\)AC tại N. Gọi K là giao điểm của MD và NE. Chứng minh rằng;
a) △MBD=△NCE; b)△MAK=△NAK
a, Xét tam giác MBD và tam giác NCE ta có :
DM = CE (gt)
^MBD = ^NCE (gt)
Vậy tam giác MBD = tam giác NCE ( ch - gn )
=> MB = NC ( 2 cạnh tương ứng )
=> AM = AN
b, Xét tam giác MAK và tam giác NAK có :
AK _ chung
AM = AN ( cmt )
Vậy tam giác MAK = tam giác NAK ( ch - cgv )