Cho \(\Delta ABC\) có \(\widehat{B}=40^o;\widehat{C}=30^o\) và AB= 12cm. Tính chu vi và diện tích \(\Delta ABC\)
cho \(\Delta ABC\) có \(\widehat A={40^0}\) biết \(\widehat B= 3\widehat C\) tam giác abc là tam giác gì
giúp mik với
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
Cho \(\Delta ABC\)cân tại A có\(\widehat{B}=\widehat{C}=40^o\).Kéo dài AB về phía B lấy điểm M sao cho AM=BC. Tính\(\widehat{AMC}\)
Ta có: \(\widehat{ABC}\)+ \(\widehat{CBM}\)= 180o (kề bù)
60o + \(\widehat{CBM}\) = 180o
=) \(\widehat{CBM}\) = 180o - 60o = 120o
Ta lại có: AM = BC =) \(\Delta\)BMC cân tại B
=) \(\widehat{AMC}\)= \(\frac{180^o-\widehat{CBM}}{2}\)= \(\frac{180^o-120^o}{2}\)= 300
Cho ΔABC có \(\widehat{B}\)=65o , \(\widehat{C}\) =50o , đường cao AH=5,4 cm
a, Tính chu vi ΔABC
b, Đường cao BH=4 cm, \(\stackrel\frown{B}\)= 58o, \(\widehat{C}\)=40o. Tính SΔABC
a: Xét ΔAHB vuông tại H có sin B=AH/AB
nên AB=5,96(cm)
=>BH=2,52(cm)
Xét ΔAHC vuông tại H có sin C=AH/AC
nên AC=7,05(cm)
=>HC=4,53(cm)
BC=2,52+4,53=7,05(cm)
C=7,05+7,05+5,96=20,06(cm)
b: góc A=180-58-40=82 độ
Xét ΔBHA vuông tại H có tan A=BH/HA
nên HA=0,56(cm)
Xét ΔBHC vuông tại H có tan C=BH/HC
nên HC=4,77(cm)
=>AC=5,33(cm)
\(S_{ABC}=\dfrac{5.33\cdot4}{2}=10.66\left(cm^2\right)\)
Cho \(\Delta ABC\) cân tại B , có \(\widehat{ABC}=80^o\) . Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}=10^o\) và \(\widehat{ICA}=30^o\) . Tính số đo \(\widehat{AIB}\) .
Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)
=> góc BAI = 50o - 10o = 40o
góc BCI = 50o - 30o = 20o
=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)
\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)
cho \(\Delta ABC\) có \(\widehat{B}=\widehat{C}=40^o.\) gọi Ax là tia phân giác của góc ngoài ở đỉnh A. Hãy chứng tỏ rằng Ax // BC
Theo đề ta giải được : \(\widehat{A}=100^0\)
Gọi à là tia phân giác ngoài của góc A .
\(\Rightarrow\widehat{A_2}=\widehat{A_3}=\frac{\left(180^0-100^0\right)}{2}=\frac{80^0}{2}=40^0\)
\(\Rightarrow\widehat{A_2}=\widehat{C}\left(=40^0\right)\)
Mà góc A 1 và góc C là hai góc so le trong .
=> Ax // BC ( đpcm )
Gọi góc CAy là góc ngoài của tam giác ABC
Ta có Ax là tia p/g của góc CAy nên góc CAx=góc xAy=góc CAy:2=(góc C+góc B):2=(40 độ +40 độ):2=40 độ
=>Góc xAC=góc C(=40 độ)
Mà hai góc này ở vị trí so le trong
=>Ax//BC
Cho\(\Delta ABC\)cân ở A có \(\widehat{B}=\widehat{C}=40^o\)Tia phân giác của \(\widehat{B}\)cắt AC tại D. Chứng minh:\(DA+DB=BC\)
Cho \(\Delta ABC\) có ba góc nhọn nội tiếp đường tròn (O;R), AD là đường cao của \(\Delta ABC\) và AM là đường kính của đường tròn tâm O, gọi E là hình chiếu của B trên AM.
a) CM: \(\widehat{ACM}=90^o\) và \(\widehat{BAD}=\widehat{MAC}\)
b) CM: Tứ giác ABDE nội tiếp
c) CM: DE//BC
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp
Cho \(\Delta ABC\) \(\widehat{B}=40^{^o}\) , \(\widehat{C}=34^o\) , AH là đường cao. Tính BH, CH= ?
Cho \(\Delta ABC=\Delta HIK\) trong đó AB=2cm,\(\widehat{B}=40^o\),BC=4cm.Tính Hi,IK,\(\widehat{I}\) ?
vì tam giácABC= tam giác HIK
nên: AB=HI = 2cm (2 cạnh tướng ứng)
góc B= góc I= 40 độ(2 góc tương ứng)
BC=IK =4cm (2 cạnh tương ứng)