\(\frac{x}{3}=\frac{y}{4};\frac{z}{5}=\frac{y}{7}\) và 2x + 3y - z = 186
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\) Tính A+B+C \)
Bài 1 : Tính :
B = \(\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
Bài 2 : tìm x và y
a) x3 - 36x = 0
b) \(\frac{x-3}{y-2}=\frac{3}{2}\)và x - y = 4 ( x , y \(\in\)Z )
Bài 1:
\(B=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{4}+\frac{3}{8}-\frac{5}{12}}+\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{8}}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)\(=\frac{\frac{1}{2}+\frac{3}{4}-\frac{5}{6}}{\frac{1}{2}\left(\frac{1}{2}+\frac{3}{4}-\frac{5}{6}\right)}+\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{8}\right)}{\frac{1}{4}+\frac{1}{5}-\frac{1}{8}}\)
\(=\frac{1}{\frac{1}{2}}+3\) \(=2+3\) \(=5\)
Vậy B=5
Bài 2:
a) x3 - 36x = 0
=> x(x2-36)=0
=> x(x2+6x-6x-36)=0
=> x[x(x+6)-6(x+6) ]=0
=> x(x+6)(x-6)=0
\(\Rightarrow\orbr{\begin{cases}^{x=0}x+6=0\\x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}^{x=0}x=-6\\x=6\end{cases}}\)
Vậy x=0; x=-6; x=6
b) (x - y = 4 => x=4+y)
x−3y−2 =32
=>2(x-3) = 3(y-2)
=>2x-6= 3y-6
=>2x-3y=0
=>2(4+y)-3y=0
=>8+2y-3y=0
=>8-y=0
=>y=8 (thỏa mãn)
Do đó x=4+y=4+8=12 (thỏa mãn)
Vậy x=12 và y =8
B= 1/2 + 3/4 - 5/6/1/2(1.2 + 3/4 - 5/6) + 3(1/4+ 1/5 - 1/8)/ 1/4 1/5 - 1/8
B= 1/ 1/2 + 3
B= 2+3
B=5
B2:
a) x^3 - 36x = 0
x(x^2 - 36) = 0
=> x=0 hoặc x^2-36=0
=> x= 0 hoặc x^2=36
=> x=0 hoặc x= +- 6
b) x-y = 4 => x= 4+y
thay x=4+y vào x- 3/ y-2=3/2, có:
4+y-3/ y+2 = 3/2
y+1/ y+2 = 3/2
y+2 -1/ y+2 = 3/2
1 - 1/y+2 = 3/2
1/y+2= 1-3/2
1/y+2 = -1/2
=> y+2 = -2
=> y= -4
Dp x= 4+y => x= 4-4
=> x=0
Vậy x=0 và y=-4
Tìm x,y ϵ Z
a,\(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)
b,\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
c,\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
d,\(\frac{x}{8}-\frac{2}{y}=\frac{3}{4}\)
e,\(\frac{x}{4}-\frac{2}{y}=\frac{3}{2}\)
g,\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
x≠y≠0
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
Tìm x,y và z biết
1 .\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{4}\)và x+y+z=46
2.\(\frac{x}{3}=\frac{z}{4};\frac{y}{2}=\frac{z}{3}\)và x-y-z=33
3.\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và 2x+3y-4z=93
4 . \(\frac{x}{2}=\frac{y}{3};2y=3z\)và x+y+z=49
Đỗ Ngọc Hải nhưg ko bt cách lm ^^ đúng ko Miki Thảo
Làm cho câu 1 vậy, các câu sau tương tự
\(\frac{x}{2}=\frac{y}{3}\Rightarrow x=y.\frac{2}{3};\frac{y}{2}=\frac{z}{4}\Rightarrow z=y.2\)
=> x+y+z = \(y.\frac{2}{3}+y+y.2=46\)
\(y.\left(\frac{2}{3}+1+2\right)=46\)
\(y.3\frac{2}{3}=46\)
=> \(y=12\frac{6}{11}\)
=> \(x=12\frac{6}{11}.\frac{2}{3}=8\frac{4}{11}\)
=> \(z=12\frac{6}{11}.2=25\frac{1}{11}\)
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\)
Tính A+B+C
Tìm x;y;z biết:
a)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}vàx-3.y+4.z=62\)b)\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}và2.x+3.y-z=186\)
\(Tìm\) \(\frac{t}{y}\) :
\(a)\)\(\frac{t}{x}=\frac{4}{3};\frac{y}{z}=\frac{3}{2};\frac{z}{x}=\frac{1}{6}\)
\(b)\frac{t}{x}=\frac{4}{3};\frac{y}{z}=\frac{2}{3};\frac{z}{x}=\frac{1}{6}\)
\(c)\frac{t}{x}=\frac{3}{4};\frac{y}{z}=\frac{3}{2};\frac{z}{x}=\frac{1}{6}\)
\(1.\frac{x}{3}=\frac{y}{4}vàx+y=14\)
\(2.\frac{x}{5}=\frac{y}{3}vàx-y=20\)
\(3.\frac{x}{7}=\frac{y}{4}vàx-y=30\)
\(4.\frac{x}{5}=\frac{y}{7}vàx-y=48\)
\(5.\frac{x}{3}=\frac{y}{6}vàx+y=90\)
\(6.\frac{x}{-2}=\frac{y}{5}vàx+y=12\)
\(7.\frac{x}{4}=\frac{y}{-7}vàx-y=33\)
\(8.\frac{x}{3}=\frac{y}{2}và2x+5y=32\)
\(9.\frac{x}{5}=\frac{y}{2}và3x-2y=44\)
\(10.\frac{x}{3}=\frac{y}{5}và2x+4y=28\)
Tìm x, y biết
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\) và 2x-3y+z=6
\(b.\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x+y+z=49
\(c.\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\)và 2x+3y-z=50
\(d.\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)