Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thu Hiền
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 22:55

Đề sai với $b=0,1; c=0,2; a=0,25$

Xem chi tiết
Khánh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 17:20

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)

Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)

Nhân vế với vế:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều

le dinh dung
Xem chi tiết
Ben 10
1 tháng 8 2017 lúc 14:54

a,b,c thuộc N nữa phương tề. 

giả sử b và c đều ko chia hết cho 3 

=> b^2;c^2 chia 3 dư 1 hoặc dư 2 

=> a^2 chia 3 dư 2 hoặc 1 (tương ứng ở trên) 

=> a^2 có dạng 3k+2 hoặc 3k+1 

xét các k=1;2;3 thì a đều ko thuộc N => vô lý 

=> DPCM 

làm dc rk thôi, ko làm dc nữa 

---kenny cold----

Nguồn:myself

cách 2

b hoặc c chỉ chia hết cho 3 nếu a là bội số của 5 tức là a = 5k với k là số tự nhiên. 

Còn trong các trường hợp khác thì không, 

thí dụ: 

a = 5 thì b = 3 và c =4 vậy b chia hết cho 3. 

a = 10 thì b = 6 và c = 8 vậy trong hai số có b chia hết cho 3 tức là b hoặc c chia hết cho 3

cách 3

nếu a, b, c là ba cạnh của một tam giác vuông (a là cạnh huyền) thì b hoặc c chia hết cho 3? 

Đề này có vấn đề rồi ví dụ nhé : 

Trên hai cạnh của góc vuông xAy đặt AB = AC = 4 . 

Tam giác ABC vuông cạnh huyền BC = a 

cạnh AC = b, cạnh AB = c cả hai cạnh này đều không chia hết cho 3

Cao Thanh Nga
Xem chi tiết
Nguyễn Bảo Nhi
Xem chi tiết
o0o Vi _Sao _Dem _Trang...
23 tháng 5 2016 lúc 9:19

a) Chứng minh rằng trong một tam giác, một góc sẽ là nhọn, vuông hay tù tùy theo cạnh đối diện với góc đó nhỏ hơn hay bằng hay lớn hơn hai lần đường trung tuyến kẻ tới cạnh đó

b) cho một tam giác có độ dài các cạnh là a,b,c đồng thời a-b=b-c. Điểm M là giao điểm của hai trung tuyến, P là giao điểm của các đường phân giác của góc trong tam giác đã cho. Chứng minh rằng MP song song với cạnh có độ dài bằng 

ch mik mk ich lại nha !!!

Nguyễn Bảo Nhi
23 tháng 5 2016 lúc 9:21

ý bạn là sao?????

ngô xuân tùng
Xem chi tiết
Thuỳ Linh Nguyễn
8 tháng 8 2023 lúc 22:33

bạn Tham khảo bài bạn này 

Trang Nguyen
Xem chi tiết
Lê Thị Nhung
26 tháng 2 2020 lúc 16:16

A B C O

Ta có AB=AC (GT), AO chung, OB=OC (GT) suy ra tam giác ABO=tam giác ACO (c.c.c)

suy ra góc BAO=góc CAO

mà O là điểm nằm trong tam giác ABC nên tia AO nằm giữa hai tia AB và AC

suy ra AO là tia phân giác của góc BAC (1)

chứng minh tương tự  BO là tia phân giác của góc ABC (2)

CO là tia phân giác của góc ACB (3)

Từ(1), (2), (3) suy ra điều phải chứng minh

Khách vãng lai đã xóa
Nguyễn Văn A
Xem chi tiết
meme
1 tháng 9 2023 lúc 14:03

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta sử dụng bất đẳng thức tam giác. Bất đẳng thức tam giác cho biết rằng tổng độ dài của ba đường trung tuyến của một tam giác luôn lớn hơn hoặc bằng bình phương độ dài cạnh tương ứng. Vì vậy, ta có:

ama + bmb + cmc ≥ (ma + mb + mc)²/3

Theo định lý đường trung tuyến, ta biết rằng ma + mb + mc = 3/2(a + b + c). Thay vào biểu thức trên, ta có:

ama + bmb + cmc ≥ (3/2(a + b + c))²/3

Simplifying the expression, we get:

ama + bmb + cmc ≥ 3/4(a + b + c)²

Để chứng minh rằng ama + bmb + cmc ≥ √32, ta cần chứng minh rằng 3/4(a + b + c)² ≥ √32. Tuy nhiên, để chứng minh điều này, cần thêm thông tin về giá trị của a, b, c.

Nguyễn Phúc
Xem chi tiết