Đề sai với $b=0,1; c=0,2; a=0,25$
Đề sai với $b=0,1; c=0,2; a=0,25$
cho a,b,c là độ dài ba cạnh của tam giác chứng minh rằng :
\(\dfrac{a^2+2bc}{b^2+c^2}+\dfrac{b^2+2ac}{c^2+a^2}+\dfrac{c^2+2ab}{a^2+b^2}>3\)
mọi người giúp mình với
Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :Cho biểu thức: \(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\).
a) Phân tích biểu thức A thành nhân tử.
b) Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác thì A < 0.
1. Chứng minh: \(a^6+b^6+c^6\ge a^5b+ac^5+b^5c\) với \(a,b,c\ge0\)
2. Chứng minh rằng: với a,b,c > 0 thì \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{a^2+c^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. Chứng minh rằng: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với a,b,c > 0.
4. Cho a,b,c là độ dài 3 cạnh của tam giác. Chứng minh: \(\dfrac{1}{a+b};\dfrac{1}{a+c};\dfrac{1}{b+c}\) là độ dài của tam giác.
Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
a2 + b2 + c2 < 2(ab + bc + ac)
Giúp mình với. Mình tick cho. Thanks các bạn nhiều.
Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác thì: A =4a^2b^2 -(a^2 +b^2 -c^2)^2 luôn luôn dương
Cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng: a2+2bc>b2+c2