2/15+2/35+2/63+2/99+2/143
2/15+2/35+2/63+2/99+2/143
=2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13
=1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13
= 1/3 - 1/13
= 13/39 -3/39
=10/39
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\\ =\dfrac{1}{3}-\dfrac{1}{13}\\ =\dfrac{13}{39}-\dfrac{3}{39}\\ =\dfrac{10}{39}\)
NHỚ TÍNH ĐÚNG VỚI CHO COIN NHA
S=2/15+2/35+2/63+2/99+2/143
$\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}=\frac{2}{3.5}+\frac{2}{5.7}+$\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}$
=$\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{11}-\frac{1}{13}$
=$\frac{1}{3}-\frac{1}{13}=\frac{10}{39}$
Vậy....
\(S=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(S=\dfrac{1}{3}-\dfrac{1}{13}\)
\(S=\dfrac{13}{39}-\dfrac{3}{39}\)
\(S=\dfrac{10}{39}\)
Vậy \(S=\dfrac{10}{39}\)
x-2/15-2/35-2/63-2/99-2/143-2/195=7/15
BẰNG 11/15 NHA BẠN
2/3+2/15+2/35+2/63+2/99+2/143+2/195
mi tích tau tau tích mi xong tau trả lời nka việt nam nói là làm
tính bằng cách nhanh nhất
2/15 + 2/35 + 2/63 + 2/99 + 32/143 + 2/195
2/15 + 2/35 + 2/63 + 2/99 + 2/143 + 2/195
\(=2\times\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}+\dfrac{1}{13.15}\right)\)
= \(2\times\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\right)\)
\(=2\times\left(\dfrac{1}{3}-\dfrac{1}{15}\right)\)
\(=2\times\dfrac{4}{15}\)
\(=\dfrac{8}{15}\)
tính
2/15+2/35+2/63+2/99+2/143
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(A=\frac{1}{3}-\frac{1}{13}\)
\(A=\frac{10}{39}\)
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(=\frac{1}{3}-\frac{1}{13}\)
\(=\frac{10}{39}\)
_Hok tốt_
!!!
Tính nhanh:
\(\dfrac{2}{3}\) + \(\dfrac{2}{15}\) + \(\dfrac{2}{35}\) + \(\dfrac{2}{63}\) + \(\dfrac{2}{99}\) + \(\dfrac{2}{143}\) .
Giải:
\(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(=\dfrac{1}{1}-\dfrac{1}{13}\)
\(=\dfrac{12}{13}\)
Chúc em học tốt!
2/3+2/15+2/35+2/63+2/99+2/143
=2(1/1x3+1/3x5+1/5x7+1/7x9+1/9x11+1/11x13)
=2(1-1/3+1/3-1/5+1/5-....+1/13)
=2(1-1/13)
=2.12/13=24/13
5-2/3-14/15+1/35-62/63-98/99-142/143
\(5-\dfrac{2}{3}-\dfrac{14}{15}+\dfrac{1}{35}-\dfrac{62}{63}-\dfrac{98}{99}-\dfrac{142}{143}\)
\(=5-\left(1-\dfrac{1}{3}\right)-\left(1-\dfrac{1}{15}\right)+\dfrac{1}{35}-\left(1-\dfrac{1}{63}\right)-\left(1-\dfrac{1}{99}\right)-\left(1-\dfrac{1}{143}\right)\)
\(=5-1+\dfrac{1}{1\cdot3}-1+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}-1+\dfrac{1}{7\cdot9}-1+\dfrac{1}{9\cdot11}-1+\dfrac{1}{11\cdot13}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\)
\(=1-\dfrac{1}{13}=\dfrac{12}{13}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(A=\frac{2}{3}+\frac{2}{15}+...+\frac{2}{143}\)
\(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{11\cdot13}\)
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(A=1-\frac{1}{13}=\frac{12}{13}\)
\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)
\(\frac{2}{6}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)