$\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}=\frac{2}{3.5}+\frac{2}{5.7}+$\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}$
=$\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{11}-\frac{1}{13}$
=$\frac{1}{3}-\frac{1}{13}=\frac{10}{39}$
Vậy....
\(S=\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(S=\dfrac{1}{3}-\dfrac{1}{13}\)
\(S=\dfrac{13}{39}-\dfrac{3}{39}\)
\(S=\dfrac{10}{39}\)
Vậy \(S=\dfrac{10}{39}\)