giải hệ phương trình |x-1|=4-y^2
va x^2-2y-y^2+5=0
Cho hệ phương trình x+my=2va mx-2y=1.Tìm các số nguyên m để hệ có nghiệm duynhất (x,y) mà x> 0, y <0
giải các hệ phương trình sau
a.{ x + 3y = -2
{ 5x - 4y = 11
b.{ 3xy = 5
{ 5x + 2y = 23
c.{ 3x +5y = 1
{ 2x - y = -8
d.{ x - 2y + 6 = 0
{ 5x - 3y - 5 = 0
e.{ 2(x + y) + 3(x - y) = 4
{ (x + y) + 2(x - y) = 5
\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)
\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)
Giải hệ phương trình :
(4.x^2 + 1).x + (y − 3) √5 − 2y = 0
4.x^2 + y^2 + 2.√3 − 4x = 7
(x, y ∈ R)
Ta có hệ \(\hept{\begin{cases}\left(4x^2+1\right)x+\left(y-3\right)\sqrt{5-2y}=0\left(1\right)\\4x^2+y^2+2\sqrt{3-4x}=7\left(2\right)\end{cases}}\)
ĐK \(\hept{\begin{cases}y\ge\frac{5}{2}\\x\le\frac{3}{4}\end{cases}}\)
Đặt \(\hept{\begin{cases}2x=a\\\sqrt{5-2y}=b\ge0\end{cases}\Rightarrow\hept{\begin{cases}4x^2=a^2\\5-2y=b^2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}4x^2=a^2\\y-3=\frac{5-b^2}{2}-3=\frac{-1-b^2}{2}\end{cases}}\)
Thế vào (1) ta có \(\left(a^2+1\right)\frac{a}{2}+\frac{-1-b^2}{2}b=0\)
\(\Leftrightarrow\frac{a^3+a}{2}+\frac{-b^3-b}{2}=0\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)vì \(a^2+ab+b^2+1>0\forall a,b\)
\(\Rightarrow2x=\sqrt{5-2y}\Rightarrow4x^2=5-2y\Rightarrow y=\frac{5-4x^2}{2}\)
Thế y vào (2) ta có \(4x^2+\left(\frac{5-4x^2}{2}\right)^2+2.\sqrt{3-4x}=7\)
\(\Leftrightarrow16x^2+\left(5-4x^2\right)^2+8\sqrt{3-4x}=28\)\(\Leftrightarrow16x^2+25-40x^2+16x^4+8\sqrt{3-4x}-28=0\)
\(\Leftrightarrow16x^4-24x^2+8\sqrt{3-4x}-3=0\)
\(\Leftrightarrow\left(16x^4-1\right)-\left(24x^2-6\right)+\left(8\sqrt{3-4x}-8\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+\left(8\sqrt{3-4x}-8\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(4x^2+1\right)-6\left(4x^2-1\right)+8.\frac{2-4x}{\sqrt{3-4x}+1}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)\left(4x^2+1\right)-6\left(2x+1\right)\left(2x-1\right)-8.2.\frac{2x-1}{\sqrt{3-4x}+1}=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2+1\right)-6\left(2x+1\right)-\frac{16.1}{\sqrt{3-4x}+1}\right]=0\)
\(\Leftrightarrow\left(2x-1\right)\left[\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}\right]=0\)
\(\Leftrightarrow2x-1=0\)
Vì với \(y=\frac{5-4x^2}{2}\ge\frac{5}{2}\Rightarrow4x^2-5< 0\Rightarrow\left(2x+1\right)\left(4x^2-5\right)-\frac{16}{\sqrt{3-4x}+1}< 0\)
\(\Leftrightarrow x=\frac{1}{2}\Rightarrow y=\frac{5-4\left(\frac{1}{2}\right)^2}{2}=2\)
Vậy hệ có nghiệm \(\left(x;y\right)=\left(\frac{1}{2};2\right)\)
Giải các phương trình và hệ phương trình sau :
1. \(3x^2-7x+2=0\)
2. \(x^4-5x+4=0\)
3. \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{matrix}\right.\)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
Giải phương trình và hệ phương trình:
1) \(-2x^2+x+1-2\sqrt{x^2+x+1}=0\)
2) \(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
Giải hệ phương trình : \(x^2+y^2+6xy-\frac{1}{\left(x-y\right)^2}+\frac{9}{8}=0\)
\(2y-\frac{1}{x-y}+\frac{5}{4}=0\)
Giải hệ phương trình \(\hept{\begin{cases}x^3-x=x^2y-y\\\sqrt{2\left(x^4+1\right)}-5\sqrt{|x|}+\sqrt{y}+2=0\end{cases}}\)
ĐKXĐ : \(y\ge0\)
P/t (1) \(\Leftrightarrow x^2\left(x-y\right)-\left(x-y\right)=0\) \(\Leftrightarrow\left(x^2-1\right)\left(x-y\right)=0\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x-y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=y\end{cases}}\)
Xét : \(x=\pm1\) . Với x = 1 và với x = -1 thay vào p/t (2) tìm y rồi đối chiếu ĐK
Xét : \(x=y\) Mà \(y\ge0\) nên \(x\ge0\Rightarrow\left|x\right|=x\)
Khi đó , p/t (2) \(\Leftrightarrow\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{x}+2=0\)
\(\Leftrightarrow\sqrt{2\left(x^4+1\right)}-5\sqrt{x}+\sqrt{x}+2=0\)
\(\Leftrightarrow\sqrt{2\left(x^4+1\right)}-4\sqrt{x}+2=0\)
\(\Leftrightarrow\sqrt{2\left(x^4+1\right)}=4\sqrt{x}-2\) (1)
Vì x >= 0 nên AD BĐT Cô - si ta được : \(x^4+1\ge2x^2\Rightarrow\sqrt{2\left(x^4+1\right)}\ge\sqrt{2.2x^2}=2x\) ( vì x >= 0 ) (2)
Với x >= 0 ta luôn có : \(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow x-2\sqrt{x}+1\ge0\Leftrightarrow2x-4\sqrt{x}+2\ge0\)
\(\Leftrightarrow4\sqrt{x}-2\le2x\) . (3)
Từ (1) ; (2) và (3) suy ra : \(VT=VP=2x\)
Dấu " = " xảy ra <=> x = 1 (t/m)
Mà x = y suy ra : y = 1 (t/m)
Vậy ...
Giải hệ phương trình: \(\hept{\begin{cases}x^3-x=x^2y-y\\\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{y}+2=0\end{cases}}\)
\(\hept{\begin{cases}x^3-x=x^2y-y\left(1\right)\\\sqrt{2\left(x^4+1\right)}-5\sqrt{\left|x\right|}+\sqrt{y}+2=0\left(2\right)\end{cases}}\)
điều kiện: \(y\ge0\)
\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=\pm1\end{cases}}\)
-nếu x=\(\pm\)1 thay vào phương trình (2) ta có: \(\sqrt{y}-1=0\Leftrightarrow y=1\)
-nếu \(x=y\ge0\)
khi đó \(\left(2\right)\Leftrightarrow\sqrt{2\left(x^4+1\right)}-4\sqrt{x}+2=0\left(3\right)\)
do \(2\left(x^4+1\right)\ge2\cdot2\sqrt{x^4\cdot1}=4x^2\Rightarrow\sqrt{2\left(x^4+1\right)}\ge2\left|x\right|=2x\)
nên \(VT\left(3\right)\ge2\left(x-2\sqrt{x}+1\right)=2\left(\sqrt{x}-1\right)^2\ge0\)
do đó \(pt\left(3\right)\Leftrightarrow\hept{\begin{cases}x^4=1\\\sqrt{x}-1=0\end{cases}\Leftrightarrow x=1\Rightarrow y=1}\)
Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left\{\left(1,1\right);\left(-1;1\right)\right\}\)
Câu 1: Giải phương trình và hệ phương trình sau:
a) \(x^4+3x^2-4=0\)
b) \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
Câu 2: Trên mặt phẳng tọa độ Oxy cho điểm T (-2; -2), (P) có phương trình \(y=-8x^2\) và đường thẳng d có phương trình y = - 2x - 6
a) Điểm T có thuộc đường thẳng d không ?
b) Xác định tọa độ giao điểm của đường thẳng d và (P)
Câu 1:
a) Ta có: \(x^4+3x^2-4=0\)
\(\Leftrightarrow x^4+4x^2-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
mà \(x^2+4>0\forall x\)
nên \(x^2-1=0\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
Vậy: S={1;-1}
Câu 1:
b) Ta có: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)
Vậy: (x,y)=(1;2)
Câu 2:
a) Thay x=-2 vào (d), ta được:
\(y=-2\cdot\left(-2\right)-6=4-6=-2\)
Vậy: T(-2;-2) thuộc (d)