\(3x^2-7x+1=0\)
Giai phương trình sau:
a,\(x^2+3x-10=0\) b,\(3x^2-7x+1=0\)
c,\(3x^2-7x+8=0\) d,\(4x^2-12x+9=0\)
e,\(3x^2+7x+2=0\) h,\(x^2-4x+1=0\)
i,\(2x^2-6x+1=0\) j, \(3x^2+4x-4=0\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
tìm x
a)(3x-1)^2+2(3x-1)(2x+1)+(2x+1)^2=0
b)(7x+2)^2+(7x-2)^2-2(7x+2)(7x-2)=0
I don't now
sorry
...................
nha
a) \(\left(3x-1\right)^2+2\left(3x-1\right)\left(2x+1\right)+\left(2x+1\right)^2=0\)
\(\Leftrightarrow\)\(\left[\left(3x-1\right)+\left(2x-1\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(5x-2\right)^2=0\)
\(\Leftrightarrow\)\(5x-2=0\)
\(\Leftrightarrow\)\(x=\frac{2}{5}\)
Vậy...
b) \(\left(7x+2\right)^2+\left(7x-2\right)^2-2\left(7x+2\right)\left(7x-2\right)=0\)
\(\Leftrightarrow\)\(\left[\left(7x+2\right)-\left(7x-2\right)\right]^2=0\)
\(\Leftrightarrow\)\(4^2=0\) vô lí
Vậy pt vô nghiệm
a) 3x2+12x-66=0
b) 9x2-30x+225=0
c) x2+3x-10=0
d) 3x2-7x+1=0
e) 3x2+7x+2=0
f) 4x2-12x+9=0
g) 3x2+7x+2=0
h) x2-4x+1=0
i) 2x2-6x+1=0
j) 3x2+4x-4=0
Cảm ơn bạn giải giúp mình rất nhiều .
a)
\(3x^2+12x-66=0\)
\(\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)
\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)
b)
\(9x^2-30x+225=0\)
\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)
\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)
c)
\(x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)
\(\Rightarrow x=-5\) hoặc $x=2$
d)
$3x^2-7x+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$
$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$
$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$
$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$
e)
$3x^2+7x+2=0$
$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$
$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$
$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$
$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
f)
$4x^2-12x+9=0$
$\Leftrightarrow (2x)^2-2.2x.3+3^2=0$
$\Leftrightarrow (2x-3)^2=0\Rightarrow 2x-3=0\Rightarrow x=\frac{3}{2}$
g) Trùng câu e
h)
$x^2-4x+1=0$
$\Leftrightarrow x^2-4x+4-3=0$
$\Leftrightarrow (x-2)^2=3\Rightarrow x-2=\pm \sqrt{3}$
$\Rightarrow x=2\pm \sqrt{3}$
i)
$2x^2-6x+1=0$
$\Leftrightarrow 2(x^2-3x+\frac{3^2}{2^2})=\frac{7}{2}$
$\Leftrightarrow 2(x-\frac{3}{2})^2=\frac{7}{2}$
$\Leftrightarrow (x-\frac{3}{2})^2=\frac{7}{4}$
$\Rightarrow x-\frac{3}{2}=\pm \frac{\sqrt{7}}{2}$
$\Rightarrow x=\frac{3\pm \sqrt{7}}{2}$
j)
$3x^2+4x-4=0$
$\Leftrightarrow 3x^2+6x-2x-4=0$
$\Leftrightarrow 3x(x+2)-2(x+2)=0$
$\Leftrightarrow (x+2)(3x-2)=0$
$\Rightarrow x+2=0$ hoặc $3x-2=0$
$\Rightarrow x=-2$ hoặc $x=\frac{2}{3}$
Giải các phương trình tích sau
a) 3x2 + 12x – 66 = 0 b) 9x2 – 30x + 225 = 0
c) x2 + 3x – 10 = 0 d) 3x2 – 7x + 1 = 0
e) 3x2 – 7x + 8 = 0 f) 4x2 – 12x + 9 = 0
g) 3x2 + 7x + 2 = 0 h) x2 – 4x + 1 = 0
i) 2x2 – 6x + 1 = 0 j) 3x2 + 4x – 4 = 0
giải phương trình
(3x-2) {2(x+3)/7- 4x-3/5)}=0
(3,3-11x) { 7x+2/5+2(1-3x)/3}=0
3/7x-1=1/7x(3x-7)
mik cần gấp chiều mai mik phải nộp r
a: \(\left(3x-2\right)\cdot\left(\dfrac{2}{7}\left(x+3\right)-\dfrac{4x-3}{5}\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(\dfrac{2}{7}x+\dfrac{6}{7}-\dfrac{4}{5}x+\dfrac{3}{5}\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(-\dfrac{18}{35}x+\dfrac{51}{35}\right)=0\)
=>x=2/3 hoặc x=51/18=17/6
b \(\left(3.3-11x\right)\left(\dfrac{7x+2}{5}+\dfrac{2\left(1-3x\right)}{3}\right)=0\)
\(\Leftrightarrow\left(-10x+3\right)\left(21x+6+10-30x\right)=0\)
\(\Leftrightarrow\left(-10x+3\right)\left(-9x+16\right)=0\)
=>x=3/10 hoặc x=16/9
c: \(\dfrac{3}{7x-1}=\dfrac{1}{7x\left(3x-7\right)}\)
=>21x(3x-7)=7x-1
\(\Leftrightarrow63x^2-154x+1=0\)
\(\text{Δ}=\left(-154\right)^2-4\cdot63=23464\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{154-\sqrt{23464}}{126}\\x_2=\dfrac{154+\sqrt{23464}}{126}\end{matrix}\right.\)
Giải các phương trình sau:
1. 3x2 + 12x - 66 = 0
2. 3x2 - 7x + 8 = 0
3. 3x2 - 7x + 1 = 0
Ai biết làm thì giúp mình với
1.\(3x^2+12x-66=0\)
\(\Rightarrow\)\(3\left(x^2+4x+4\right)-78=0\)
\(\Rightarrow3\left(x+2\right)^2=78\)
\(\Rightarrow\left(x+2\right)^2=26\)
\(\Rightarrow x+2=\sqrt{26}\)hoặc \(x+2=-\sqrt{26}\)
\(\Rightarrow x=\sqrt{26}-2\)hoặc \(x=-\sqrt{26}-2\)
/2x+3x/-3x+2=0
/2+3x/=4x-3
/7x+1/-/5x+6/=0
a) Ta có |2x + 3x| - 3x + 2 = 0
=> |2x + 3x| = 3x - 2
ĐK : 3x - 2 \(\ge0\Rightarrow x\ge\frac{2}{3}\)
Khi đó |2x + 3x| = 3x - 2
<=> \(\orbr{\begin{cases}2x+3x=3x-2\\2x+3x=-3x+2\end{cases}}\Rightarrow\orbr{\begin{cases}2x=-2\\8x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}}\)(loại)
Vậy không tìm được giá trị của x thỏa mãn
b) ĐK 4x - 3 \(\ge0\Rightarrow x\ge\frac{3}{4}\)
Khi đó |2 + 3x| = 4x - 3
<=> \(\orbr{\begin{cases}2+3x=4x-3\\2+3x=-4x+3\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=\frac{1}{7}\left(\text{loại}\right)\end{cases}}\)
Vậy x = 5 là giá trị cần tìm
c) |7x + 1| - |5x + 6| = 0
=> |7x + 1| = |5x + 6|
=> \(\orbr{\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}\)
Vậy \(x\in\left\{\frac{5}{2};-\frac{7}{12}\right\}\)là giá trị cần tìm
a) \(\left|2x+3x\right|-3x+2=0\)
<=> \(\left|5x\right|-3x+2=0\)
<=> \(\orbr{\begin{cases}5x-3x+2=0\left(x\ge0\right)\\-5x-3x+2=0\left(x< 0\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}\left(ktm\right)}\)
b) \(\left|2+3x\right|=4x-3\)
<=> \(\orbr{\begin{cases}2+3x=4x-3\left(x\ge-\frac{2}{3}\right)\\-2-3x=4x-3\left(x< -\frac{2}{3}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x-4x=-3-2\\-3x-4x=-3+2\end{cases}}\)
<=> \(\orbr{\begin{cases}-x=-5\\-7x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=\frac{1}{7}\left(ktm\right)\end{cases}}\)
c) \(\left|7x+1\right|-\left|5x+6\right|=0\)
<=> \(\left|7x+1\right|=\left|5x+6\right|\)
<=> \(\orbr{\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}\)
tìm x
7x^3+3x^2-3x+1=0
\(\Rightarrow7x^3+7x^2-4x^2-4x+x+1=0\\ \Rightarrow\left(x+1\right)\left(7x^2-4x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\7x^2-4x+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Rightarrow7\left(x^2-2\cdot\dfrac{2}{7}x+\dfrac{4}{49}\right)+\dfrac{3}{7}=0\\ \Rightarrow7\left(x-\dfrac{2}{7}\right)^2+\dfrac{3}{7}=0\left(\text{vô lí}\right)\)
Vậy x=-1
giải các pt sau băng cách đưa về dạng tích:
1) 3x^2-7x+1=0
2) 2^3+5x^2-3x=0
3) x^3-7x+6=0
4) (2x+1)^2=(x-1)^2
3)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ................
2.
\(2x^3+5x^2-3x=0\)
\(\Leftrightarrow2x^3+6x^2-x^2-3x=0\)
\(\Leftrightarrow\left(2x^3+6x^2\right)-\left(x^2+3x\right)=0\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
a) 4X -3 =11-3x
b) x^3 -4x^2 +3x=0
c) (2x+3)(1 phần 2-7x +1) =(x+5)(1- 1 phần 7x-2)
a) \(4x-3=11-3x\)
\(\Leftrightarrow4x+3x=11+3\)
\(\Leftrightarrow7x=14\)
\(\Leftrightarrow x=2\)
Vậy .............
b) \(x^3-4x^2+3x=0\)
\(\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x^2-x-3x+3\right)=0\)
\(\Leftrightarrow x\left[x\left(x-1\right)-3\left(x-1\right)\right]=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=3\end{matrix}\right.\)
Vậy .................
P/s: câu c bn gõ lại dc ko