`3x^2-7x+1=0`
`<=>x^2-7/3x+1/3=0`
`<=>x^2-2.x. 7/6+49/36-37/36=0`
`<=>(x-7/6)^2=37/36`
`<=>x=(+-sqrt{37}+7)/6`
Vậy `S={(sqrt{37}+7)/6,(-sqrt{37}+7)/6}`
\(\Leftrightarrow\dfrac{36}{37}\left(x-\dfrac{7}{6}\right)^2=1\\ \Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)