Phân tích đa thức sau thành nhân tử: 4a³ - 3a + 1
Phân tích đa thức thành nhân tử (x+a)(x+2a)(x+3a)(x+4a)(x+5a) + a
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức sau thành nhân tử: a2 – b2 – 4a + 4
a2 – b2 – 4a + 4
= a2 – 4a + 4 – b2
= (a – 2)2 – b2
= (a – 2 + b)(a – 2 – b)
= (a + b – 2)(a – b – 2)
Phân tích đa thức sau thành nhân tử : b^4 + 4a^4
Ta có:\(b^4+4a^4=b^4+4a^2b^2+4a^4-4a^2b^2\)
\(=\left(a^2\right)^2+2.a^2.\left(2b^2\right)+\left(2b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2+2b^2\right)^2-\left(2ab\right)^2\)
\(=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)
Phân tích các đa thức sau thành nhân tử :
a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)
b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(\sqrt{2}.ab+\sqrt{2}.2\right)^2\)
\(=\left(a^2+b^2-5-\sqrt{2}.ab-\sqrt{2}.2\right).\left(a^2+b^2-5+\sqrt{2}.ab+\sqrt{2}.2\right)\)
b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
\(\left(4a^2-3a-18-4a^2-3a\right).\left(4a^2-3a-18+4a^2+3a\right)\)
\(=\left(-6a-18\right).\left(8a^2-18\right)\)
\(=\left(-6\right).\left(a+3\right).2.\left(4a^2-9\right)\)
\(=\left(-12\right).\left(a+3\right).\left(2a-3\right).\left(2a+3\right)\)
a) Xem lại đề
b) ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2
= [ ( 4a2 - 3a - 18 ) - ( 4a2 + 3a ) ][ ( 4a2 - 3a - 18 ) + ( 4a2 + 3a ) ]
= ( 4a2 - 3a - 18 - 4a2 - 3a )( 4a2 - 3a - 18 + 4a2 + 3a )
= ( -6a - 18 )( 8a2 - 18 )
= -6( a + 3 ).2( 4a2 - 9 )
= -12( a + 3 )( 4a2 - 9 )
= -12( a + 3 )( 2a - 3 )( 2a + 3 )
a. ( a2 + b2 - 5 )2 - 2 ( ab + 2 )2
= ( a2 + b2 - 5 )2 - [\(\sqrt{2}\)( ab + 2 ) ]2
= [ a2 + b2 - 5 -\(\sqrt{2}\)( ab + 2 ) ] [ a2 + b2 - 5 +\(\sqrt{2}\)( ab + 2 ) ]
= ( a2 + b2 - 5 -\(\sqrt{2}\)ab - 2\(\sqrt{2}\)) ( a2 + b2 - 5 +\(\sqrt{2}\)ab + 2\(\sqrt{2}\) )
b. ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2
= ( 4a2 - 3a - 18 - 4a2 - 3a ) ( 4a2 - 3a - 18 + 4a2 + 3a )
= ( - 6a - 18 ) ( 8a2 - 18 )
= - 6 ( a + 3 ) . 2 [ ( 2a )2 - 32 ]
= - 12 ( 2a - 3 ) ( 2a + 3 )
Phân tích đa thức thành nhân tử 4a^2 - 4b^2 -4a+1
\(4a^2-4a+1-4b^2\)
<=>\(\left(2a-1\right)^2-4b^2\)
<=>\(\left(2a-1+2b\right)\left(2a-1-2b\right)\)
\(4a^2-4a+1-4b^2\)
\(=\left(2a-1\right)^2-4b^2\)
\(=\left(2a-1+2b\right)\left(2a-1-2b\right)\)
4a2 - 4b2 - 4a -1
= (4a2- 4a +1 ) - 4b2
= [(2a)2 -2a.1 + 12 ] - (2b)2
= (2a -1 )2 - (2b)2
= 2a - 1 - 2b ) . ( 2a - 1 + 2b )
Phân tích đa thức thành nhân tử 4a+1 với a
`4a+1(a<=0=>-a>=0)`
`=1-4(-a)`
`=1-(2sqrt{-a})^2`
`=(1-2sqrt{-a})(1+2sqrt{-a})`
\(4a+1=\left(2\sqrt{-a}-1\right)\left(2\sqrt{-a}+1\right)\)
Phân tích đa thức sau thành nhân tử:
(x-a)^4 + 4a^4
thêm bớt 4(x-a)^2 . a^2 là được
nói rõ ra đc ko bạn
phân tích đa thức thành nhân tử
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4.\)
\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4.\)
\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4.\)
\(=\left(x+5ax+4a^2+a^2\right)^2.\)
\(=\left(x+5ax+5a^2\right)^2.\)
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(=\)\(\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4\)
\(=\)\(\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\)\(\left[\left(x^2+5ax+5a^2\right)-a^2\right].\left[\left(x^2+5ax+5a^2\right)-a^2\right]+a^4\)
\(=\)\(\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)
\(=\)\(\left(x^2+5ax+5a^2\right)^2\)
Chúc bạn học tốt ~