Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vi Thái Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 23:48

2: Thay x=1 và y=-4 vào (d), ta được:

2m+2=-4

hay m=-3

Hiên Viên Vân Tịch
Xem chi tiết
nguyễn thị hương giang
5 tháng 12 2021 lúc 13:35

\(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{24\cdot12}{24+12}=8\Omega\)

\(I=\dfrac{U}{R}=\dfrac{12}{8}=1,5A\)

\(P=\dfrac{U^2}{R}=\dfrac{12^2}{8}=18W\)

\(Q_{tỏa1}=A_1=U_1\cdot I_1\cdot t=12\cdot\dfrac{12}{24}\cdot1\cdot3600=21600J\)

\(Q_{tỏa2}=A_2=U_2\cdot I_2\cdot t=12\cdot\dfrac{12}{12}\cdot1\cdot3600=43200J\)

Nguyễn Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2022 lúc 14:40

a: Xét ΔSBM và ΔSNB có 

\(\widehat{SBM}=\widehat{SNB}\)

\(\widehat{BSM}\) chung

Do đó: ΔSBM\(\sim\)ΔSNB

Suy ra: SB/SN=SM/SB

hay \(SB^2=SM\cdot SN\)

b: Xét (O) có

SA là tiếp tuyến

SB là tiếp tuyến

Do đó: SA=SB

mà OA=OB

nên SO là đường trung trực của AB

=>SO⊥AB

Xét ΔOBS vuông tại B có BH là đường cao

nên \(SH\cdot SO=SB^2=SM\cdot SN\)

Hoàng Anh Thư
Xem chi tiết
Thuy Nguyen
Xem chi tiết
ILoveMath
11 tháng 1 2022 lúc 22:34

Tách nhỏ câu hỏi ra bạn

Hoàng Ngọc Trâm
Xem chi tiết

Các số được điền vào các ô theo thứ tự từ trái sang phải là:

-1; - \(\dfrac{1}{3}\);  \(\dfrac{2}{3}\)\(\dfrac{4}{3}\)

Bi Bi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 12:40

a: Xét tứ giác AECF có

AE//CF(AB//CD)

AE=CF

Do đó: AECF là hình bình hành

b: AE+EB=AB

CF+FD=CD

mà AE=CF và AB=CD

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

=>DE=BF

c:

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAIC có

D,O lần lượt là trung điểm của AI,AC

=>DO là đường trung bình

=>DO//CI

d: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của EF

=>AC,EF,BD đồng quy(do cùng đi qua O)

Hisbs Xikajs
Xem chi tiết
Gia Huy
22 tháng 6 2023 lúc 19:15

Với m = 3 thì (d): y = 8x - 7

PTHĐGĐ của (P) và (d): \(x^2-8x+7=0\)

Có: \(a+b+c=1+\left(-8\right)+7=0\)

=> PT có 2 nghiệm phân biệt \(x_1=1;x_2=7\)

\(x_1=1\Rightarrow y_1=x_1^2=1^2=1\\ x_2=7\Rightarrow y_2=x_2^2=7^2=49\)

Tọa độ giao điểm của (P) và (d) là: \(\left(1;1\right);\left(7;49\right)\)

b)

PTHĐGĐ của (P) và (d) là: 

\(x^2-2\left(m+1\right)x+3m-2=0\)

\(\Delta'=\left(m+1\right)^2-\left(3m-2\right)=m^2+2m+1-3m+2=m^2-m+3\\ =m^2-m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\forall m\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=3m-2\end{matrix}\right.\)

Theo đề: \(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)

\(\Leftrightarrow4m^2+8m+4-6m+4=20\\ \Leftrightarrow4m^2+2m+8-20=0\\ \Leftrightarrow4m^2+2m-12=0\\ \Leftrightarrow2m^2+m-6=0\)

\(\Rightarrow\left\{{}\begin{matrix}m=-2\left(tm\right)\\m=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)

YangSu
22 tháng 6 2023 lúc 19:18

Gọi tọa độ của \(\left(P\right),\left(d\right)\) là \(A\left(x_A;y_A\right),B\left(x_B;y_B\right)\)

\(a,m=3\)

\(\Rightarrow x^2=2\left(3+1\right)x-3.3+2\)

\(\Rightarrow x^2-8x+7=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)

Thay \(x=7\) vào \(\left(P\right):y=x^2\Rightarrow y=7^2=49\)

Khi m = 3 thì đường thẳng \(\left(d\right):y=2\left(3+1\right)x-3.3+2=8x-7\)

Thay \(x=1\) vào \(\left(d\right):y=8x-7=8.1-7=1\)

Vậy \(A\left(7;49\right),B\left(1;1\right)\)

\(\Rightarrow y=\left(2m+2\right)x-3m+2\)

\(b,\) Vì \(\left(P\right)\) và \(\left(d\right)\) luôn cắt nhau tại 2 điểm pb A,B \(\forall m\) nên :

\(x^2=2\left(m+1\right)x-3m+2\Leftrightarrow x^2-2\left(m+1\right)x+3m-2\)

Theo Vi-ét, ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=3m-2\end{matrix}\right.\)

Ta có : \(x_1^2+x_2^2=20\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\)

\(\Leftrightarrow\left(2m+2\right)^2-2\left(3m-2\right)=20\)

\(\Leftrightarrow4m^2+8m+4-6m+4-20=0\)

\(\Leftrightarrow4m^2+2m-12=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m=-2\end{matrix}\right.\)

Vậy \(m=\dfrac{3}{2},m=-2\) thì thỏa mãn đề bài.

Quỳnh Anh
Xem chi tiết
Akai Haruma
12 tháng 7 2023 lúc 22:58

Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.

Câu h của em đây nhé

h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))

\(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)

\(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)

\(\dfrac{-4}{2}\)

= -2