Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yoona SNSD
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:22

a)

\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} = 4;\)\(f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)

\( \Rightarrow f\left( { - 2} \right) > f\left( { - 1} \right)\)

Lấy \({x_1},{x_2} \in \left( { - 2; - 1} \right)\) sao cho \({x_1} < {x_2}\).

\( \Rightarrow {x_1} - {x_2} < 0\)

\({x_1},{x_2} < 0 \Rightarrow {x_1} + {x_2} < 0\)

Ta có:

\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) > 0\\ \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\end{array}\)

=> Hàm số nghịch biến trên (-2;-1)

Vậy hàm số giảm khi x tăng từ -2 đến -1

b)

\(\begin{array}{l}f\left( 1 \right) = 1;f\left( 2 \right) = {2^2} = 4\\ \Rightarrow f\left( 1 \right) < f\left( 2 \right)\end{array}\)

Lấy \({x_1},{x_2} \in \left( {1;2} \right)\) sao cho \({x_1} < {x_2}\).

\( \Rightarrow {x_1} - {x_2} < 0\)

\({x_1},{x_2} > 0 \Rightarrow {x_1} + {x_2} > 0\)

Ta có:

\(\begin{array}{l}f\left( {{x_1}} \right) = x_1^2;f\left( {{x_2}} \right) = x_2^2\\f\left( {{x_1}} \right) - f\left( {{x_2}} \right) = x_1^2 - x_2^2\\ = \left( {{x_1} - {x_2}} \right).\left( {{x_1} + {x_2}} \right) < 0\\ \Rightarrow f\left( {{x_1}} \right) < f\left( {{x_2}} \right)\end{array}\)

=> Hàm số đồng biến trên (1;2)

Vậy hàm số tăng khi x tăng từ 1 đến 2.

Nguyễn Khôi  Nguyên
Xem chi tiết
Nguyễn Minh Quang
16 tháng 12 2020 lúc 21:06

O y x y= - 3x -1 3

b. ta có f(-2)= -3.(-2) =6

f(5)= - 3.5= - 15

Khách vãng lai đã xóa
Phước Lộc
16 tháng 12 2020 lúc 21:19

a) Đồ thị hàm số y = -3x là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm A(1; -3).

0 x y 1 -3 A y=-3x

b) ta có: f(-2) = -3(-2) = 6

f(5) = -3.5= -15 

vậy f(-2) < f(5)

Khách vãng lai đã xóa
Nguyễn Hoàng Nhật Anh
Xem chi tiết
Gia An
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 2 2021 lúc 11:03

Ta có: 1<2

nên \(1-\sqrt{2}< 2-\sqrt{2}\)

\(\Leftrightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)(Vì hàm số y=f(x)=-x+4 nghịch biến trên R nên nếu \(x_1< x_2\) thì \(f\left(x_1\right)>f\left(x_2\right)\))

Nguyễn Trọng Chiến
15 tháng 2 2021 lúc 11:03

Ta có \(1-\sqrt{2}< 2-\sqrt{2}\) \(\Rightarrow-\left(1-\sqrt{2}\right)>-\left(2-\sqrt{2}\right)\) \(\Rightarrow-\left(1-\sqrt{2}\right)+4>-\left(2-\sqrt{2}\right)+4\) Mà \(f\left(1-\sqrt{2}\right)=-\left(1-\sqrt{2}\right)+4,f\left(2-\sqrt{2}\right)=-\left(2-\sqrt{2}\right)+4\)

\(\Rightarrow f\left(1-\sqrt{2}\right)>f\left(2-\sqrt{2}\right)\)

Nhi Nguyễn
Xem chi tiết
TV Cuber
2 tháng 5 2022 lúc 21:30

a)\(f\left(1\right)=2.1^2+5.1-3=2+5-3=4\)

\(f\left(0\right)=0+0-3=-3\)

\(f\left(1,5\right)=2.\left(1,5\right)^2-5.1,5-3=4,5-7,5-3=-6\)

 

TV Cuber
2 tháng 5 2022 lúc 21:33

b)\(f\left(3\right)=3a-3=9=>>3a=12=>a=4\)

\(f\left(5\right)=5a-3=11=>5a=14=>a=\dfrac{14}{5}\)

\(f\left(-1\right)=-a-3=6=>-a=9=>a=-9\)

 

Moon
Xem chi tiết
Etermintrude💫
5 tháng 5 2021 lúc 7:38

undefined

Lam phương
Xem chi tiết
KAl(SO4)2·12H2O
10 tháng 11 2019 lúc 9:20

\(f\left(x\right)=x^2-5x+6\)

a) +) \(f\left(-\frac{1}{3}\right)=\left(-\frac{1}{3}\right)^2-5.\left(-\frac{1}{3}\right)+6=\frac{70}{9}\)

+) \(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2-5.\frac{1}{2}+6=\frac{15}{4}\)

+) \(f\left(0\right)=0^2-5.0+6=6\)

+) \(f\left(1\right)=1^2-5.1+6=2\)

b) \(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

ok

Khách vãng lai đã xóa
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 21:22

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)