Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Daco Mafoy
Xem chi tiết
o0o I am a studious pers...
Xem chi tiết
ngonhuminh
7 tháng 1 2017 lúc 10:48

\(a^3=140+3.a\)

Vậy a nghiệm của  phương trình.x^3-3x-140 =0

ngonhuminh
7 tháng 1 2017 lúc 10:51

nhầm dấu

a^3=140-3a

đa thức cần tim là x^3+3x-140

ngonhuminh
7 tháng 1 2017 lúc 11:15

nhắc lại HĐT: (a+b)^3=a^3+b^3+3ab(a+b) 

\(a=\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}\)

\(a^3=\left(\sqrt[3]{70-\sqrt{4901}}+\sqrt[3]{70+\sqrt{4901}}\right)^{^3}\)

\(a^3=\left(70-\sqrt{4901}\right)+\left(70+\sqrt{4901}\right)+3.\left(\sqrt[3]{70^2-4901}\right).a\)

\(a^3=70+70+3.\sqrt[3]{-1}.a=140-3a\)

Minh Hiếu
Xem chi tiết
Trần Minh Hoàng
4 tháng 1 2023 lúc 8:34

Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).

Xét f(x) khác hằng.

Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)

\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).

Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).

Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).

Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).

Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
3 tháng 1 2022 lúc 22:34

Bài 1:

Đặt \(a=\sqrt[7]{\dfrac{3}{5}};b=\sqrt[7]{\dfrac{5}{3}}\Rightarrow\left\{{}\begin{matrix}a+b=x\\ab=1\end{matrix}\right.\)

Ta có \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)

\(\Rightarrow a^3+b^3=x\left(x^2-3\right)=x^3-3x\)

Ta có \(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=\left[\left(a+b\right)^2-2ab\right]^2-2\left(ab\right)^2\)

\(\Rightarrow a^4+b^4=\left(x^2-2\right)^2-2=x^4-4x^2+2\)

\(\Rightarrow\left(a^3+b^3\right)\left(a^4+b^4\right)=\left(x^3-3x\right)\left(x^4-4x^2+2\right)\\ =x^7-3x^5-4x^5+12x^3+2x^3-6x\\ =x^7-7x^5+14x^3-6x\)

Lại có \(\left(a^4+b^4\right)\left(a^3+b^3\right)=a^7+b^7+\left(ab\right)^3\left(a+b\right)=\dfrac{3}{5}+\dfrac{5}{3}+x=\dfrac{34}{15}+x\)

\(\Rightarrow x^7-7x^5+14x^3-6x=\dfrac{34}{15}+x\\ \Rightarrow15x^7-105x^5+210x^3-105x-34=0\left(1\right)\)

Vậy (1) nhận \(x=\sqrt[7]{\dfrac{3}{5}}+\sqrt[7]{\dfrac{5}{3}}\) làm nghiệm

Nguyễn Hoàng Minh
3 tháng 1 2022 lúc 22:40

Bài 2 đa thức bậc 2 chia đa thức bậc 2 dư đa thức bậc 1 ??

Minh Hiếu
3 tháng 1 2022 lúc 22:42

Áp định lí Bezu (Bài 2)

Hạ Vy
Xem chi tiết
Edogawa Conan
Xem chi tiết
thuc phamtri
Xem chi tiết
Nguyễn Thảo Nhi
Xem chi tiết
Phước Nguyễn
9 tháng 8 2016 lúc 10:40

Ta có:

\(x=\sqrt{2}+\sqrt{3}\)

nên  \(x^2=\left(\sqrt{2}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\)  \(x^2=5+2\sqrt{6}\)

\(\Rightarrow\) \(\left(x^2-5\right)^2=\left(2\sqrt{6}\right)^2\)

\(\Leftrightarrow\)  \(x^4-10x^2+25=24\)

hay   \(x^4-10x^2+1=0\)

Đa thức  \(a^4-10a^2+1=0\)  là đa thức hệ số nguyên (bậc dương nhỏ nhất) nhận số \(x\)  làm nghiệm