Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Akai Haruma
31 tháng 1 2018 lúc 0:34

Lời giải:

Ta có:

\(S=1^{22}+2^{22}+3^{22}+...+2015^{22}\)

\(S=2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)+(1^2+2^2+...+2015^2)\)

Xét số tổng quát \(a^2(a^{20}-1)\)

Nếu $a$ chẵn thì \(a\vdots 2\Rightarrow a^2\vdots 4\Rightarrow a^2(a^{20}-1)\vdots 4\)

Nếu $a$ lẻ. Ta biết một số chính phương chia $4$ dư $0,1$. Mà $a$ lẻ nên \(a^2\equiv 1\pmod 4\)

\(\Rightarrow a^{20}\equiv 1^{10}\equiv 1\pmod 4\)

\(\Rightarrow a^2(a^{20}-1)\vdots 4\)

Vậy \(a^2(a^{20}-1)\vdots 4\) (1)

Mặt khác:

Xét $a$ chia hết cho $5$ suy ra \(a^2\vdots 25\Rightarrow a^2(a^{20}-1)\vdots 25\)

Xét $a$ không chia hết cho $5$ tức $(a,5)$ nguyên tố cùng nhau.

Áp dụng định lý Fermat nhỏ: \(a^4\equiv 1\pmod 5\)

Có \(a^{20}-1=(a^4-1)[(a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1]\)

\(a^4\equiv 1\pmod 5\rightarrow a^4-1\equiv 0\pmod 5\)

\((a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1\equiv 1^4+1^3+1^2+1^1+1\equiv 5\equiv 0\pmod 5\)

Do đó: \(a^{20}-1=(a^4-1)[(a^4)^4+...+1]\vdots 25\)

Vậy trong mọi TH thì \(a^2(a^{20}-1)\vdots 25\) (2)

Từ (1)(2) suy ra \(a^2(a^{20}-1)\vdots 100\)

Do đó: \(2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)\vdots 100\)

Mặt khác ta có công thức sau:

\(1^2+2^2+..+n^2=\frac{n(n+1)(2n+1)}{6}\)

\(\Rightarrow 1^2+2^2+..+2015^2=\frac{2015(2015+1)(2.2015+1)}{6}\equiv 40\pmod {100}\)

Do đó S có tận cùng là 40

đinh văn tiến d
Xem chi tiết
đinh văn tiến d
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 16:03

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

Xem chi tiết
Lưu Quang Trường
19 tháng 2 2021 lúc 21:33

chữ số tận cùng là số 0

Trương Huy Hoàng
19 tháng 2 2021 lúc 21:39

Ta có: 2 + 22 + 23 + ... + 220

= (2 + 22 + 23 + 24) + (25 + 2+ 27 + 28) + ... + (217 + 218 + 219 + 220)

= (2 + 22 + 23 + 24) + 24(2 + 22 + 23 + 24) + 28(2 + 22 + 23 + 24) + 216(2 + 22 + 23 + 24)

= (1 + 24 + 28 + 216)(2 + 22 + 23 + 24)

= 30(2 + 22 + 23 + 24)

Vì 30 có tận cùng là 0 nên 30(2 + 22 + 23 + 24) có tận cùng là 0

hay 2 + 22 + 23 + ... + 220 có tận cùng là 0

Chúc bn học tốt!

Nguyễn Trọng Cường
19 tháng 2 2021 lúc 21:40

\(\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+\left(2^6+2^8\right)+...+\left(2^{17}+2^{19}\right)+\left(2^{18}+2^{20}\right)=10+2\cdot10+2^2\cdot10+2^4\cdot10+2^5\cdot10+...+2^{16}\cdot10+2^{17}\cdot10=10\left(1+2+2^4+2^5+...+2^{16}+2^{17}\right)\) Sẽ có tận cùng là chữ số 0

êdogawa conan
Xem chi tiết
dam quang tuan anh
31 tháng 12 2016 lúc 19:32

Số thừa số của tích: (2022 – 2) : 10 + 1 = 203 (thừa số)
Các thừa số đều tận cùng bằng 2 nên nhóm 4 thừa số có chữ số tận cùng là 6 (2x2x2x2=16). Tích nhiều thừa số có chữ số tận cùng bằng 6 thì cũng tận cùng bằng 6.
Số nhóm 4 thừa số trong tích trên:
2003 : 4 = 50 (nhóm) dư 3 thừa số.
tích 3 thừa số có chữ số tận cùng là 2x2x2 = 8.

Nên tích trên có thừa số tận cùng là 8 vì 6x8=48.
Chữ số tận cùng của tích trên là 8.

July Hecj Tare
31 tháng 12 2016 lúc 19:34

Dãy số này có: (2022-2):10+1=203(số hạng)

Chỉ lấy mình chữ số cuối cùng, ta có:2x...2x...2x.........x2x....2(có 203 thừa số 2)

                                                      =.......2203

Xét số 2203,ta có:  2203=(24)50x23

Mà 24có chữ số tận cùng là 6

Do đó, (24)50có chữ số tận cùng là chữ số 6

Mà 23 có chữ số tận cùng là 8

=>(24)50x23có chữ số tận cùng là:6x8=....8

Vậy, chữ số tận cùng của tích 2x12x22x.....x2012x2022 là 8

Nohara Shinnosuke
31 tháng 12 2016 lúc 19:37

chữ số tận cùng của:

2*1=2

2*2=4

2*2*2=8

2*2*2*2=6

dãy h trên có số chữ số là

(2022-2):10+1=203

mà 203:4 dư 3

vậy chữ số tận cùng của dãy k trên là 8

nguyen thuy linh
Xem chi tiết
Công chúa đáng yêu
31 tháng 3 2016 lúc 19:24

Ta nhận thấy:

2 tận cùng là 2

2x12 tận cùng là 4

2x12x22 tận cùng là 8

2x12x22x32 tận cùng là 6

2x12x22x32x42 tận cùng là 2

........................................

Quy luật trên cứ 4 chữ số tận cùng số 2;4;8;6 lại lập lại lần nữa

Có tất cả (2022-2):10+1= 203 so

Ta co: 203:4=50 du 3

=>chữ số tận cùng là 8

miku
31 tháng 3 2016 lúc 19:07

là số 0

Nguyễn Hưng Phát
31 tháng 3 2016 lúc 19:10

A=(2*12*22*32)*.............*(1982*1992*2002*2012)*2012

=...6*.....................................6*2012

=....................6*2012

=.........................2

Nguyễn Thị Huyền
Xem chi tiết
Phan Bình Nguyên Lâm
6 tháng 3 2016 lúc 20:54

ta có qui tắc sau các số có tận cùng là 6,1,0,5 thì nhân  bao lâu củng tận cùng số đó

giờ ta cho 2x2x2x2x2x2x2x2x2x......... 2x2x2x2=16 tận cùng 6 vậy có 50 cặp tận cùng 6 và dư 2 số 2

tận cùng là 6x2x2=24 vậy tận cùng là 4

ủng hộ nha

Trần Mai Phương
Xem chi tiết
Sana .
9 tháng 2 2021 lúc 8:33

A=2+22+23+...+220A=2+22+23+...+220

2A=22+23+24+...+2212A=22+23+24+...+221

2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)

A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2

A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯

Vậy chữ số tận cùng cả A là 0

Khách vãng lai đã xóa
Nguyễn Hồng 	Nhung
Xem chi tiết