Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Tìm 2 chữ số tận cùng của S = 1^22 + 2^22 + 3^22 + ... + 2015^22

Akai Haruma
31 tháng 1 2018 lúc 0:34

Lời giải:

Ta có:

\(S=1^{22}+2^{22}+3^{22}+...+2015^{22}\)

\(S=2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)+(1^2+2^2+...+2015^2)\)

Xét số tổng quát \(a^2(a^{20}-1)\)

Nếu $a$ chẵn thì \(a\vdots 2\Rightarrow a^2\vdots 4\Rightarrow a^2(a^{20}-1)\vdots 4\)

Nếu $a$ lẻ. Ta biết một số chính phương chia $4$ dư $0,1$. Mà $a$ lẻ nên \(a^2\equiv 1\pmod 4\)

\(\Rightarrow a^{20}\equiv 1^{10}\equiv 1\pmod 4\)

\(\Rightarrow a^2(a^{20}-1)\vdots 4\)

Vậy \(a^2(a^{20}-1)\vdots 4\) (1)

Mặt khác:

Xét $a$ chia hết cho $5$ suy ra \(a^2\vdots 25\Rightarrow a^2(a^{20}-1)\vdots 25\)

Xét $a$ không chia hết cho $5$ tức $(a,5)$ nguyên tố cùng nhau.

Áp dụng định lý Fermat nhỏ: \(a^4\equiv 1\pmod 5\)

Có \(a^{20}-1=(a^4-1)[(a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1]\)

\(a^4\equiv 1\pmod 5\rightarrow a^4-1\equiv 0\pmod 5\)

\((a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1\equiv 1^4+1^3+1^2+1^1+1\equiv 5\equiv 0\pmod 5\)

Do đó: \(a^{20}-1=(a^4-1)[(a^4)^4+...+1]\vdots 25\)

Vậy trong mọi TH thì \(a^2(a^{20}-1)\vdots 25\) (2)

Từ (1)(2) suy ra \(a^2(a^{20}-1)\vdots 100\)

Do đó: \(2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)\vdots 100\)

Mặt khác ta có công thức sau:

\(1^2+2^2+..+n^2=\frac{n(n+1)(2n+1)}{6}\)

\(\Rightarrow 1^2+2^2+..+2015^2=\frac{2015(2015+1)(2.2015+1)}{6}\equiv 40\pmod {100}\)

Do đó S có tận cùng là 40


Các câu hỏi tương tự
_Banhdayyy_
Xem chi tiết
Hara Nisagami
Xem chi tiết
Nguyễn Khánh Toàn
Xem chi tiết
phan thị ngọc ánh
Xem chi tiết
Emily Nain
Xem chi tiết
Nguyễn Việt Long
Xem chi tiết
đỗ khánh linh
Xem chi tiết
CandyK
Xem chi tiết