Đặt: \(\left\{{}\begin{matrix}a=\sqrt{x}+1\\b=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1-b}{b}=\frac{22}{15}\\\frac{3}{a}+\frac{5+b}{b}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1}{b}+1=\frac{22}{15}\\\frac{3}{a}+\frac{5}{b}+1=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{a}-\frac{1}{b}=\frac{7}{15}\\\frac{3}{a}+\frac{5}{b}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{6}{a}-\frac{3}{b}=\frac{7}{5}\\\frac{6}{a}+\frac{10}{b}=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{6}{a}-\frac{3}{b}=\frac{7}{5}\\\frac{13}{b}=\frac{13}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3=\sqrt{x}+1\\5=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5-x=1\end{matrix}\right.\)
Vậy pt có \(n_0\) \(S=\left\{4;1\right\}\)