Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hương Giang
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 2 2020 lúc 0:25

BĐT cần chứng minh tương đương:

\(\frac{2}{2+a^2b}+\frac{2}{2+b^2c}+\frac{2}{2+c^2a}\ge2\)

\(\Leftrightarrow\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Ta có: \(VT=\sum\frac{a^2b}{1+1+a^2b}\le\frac{1}{3}\sum\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{1}{3}\sum\sqrt[3]{a^4b^2}=\frac{1}{3}\sum\sqrt[3]{a^2.ab.ab}\)

\(VT\le\frac{1}{9}\sum\left(a^2+ab+ab\right)=\frac{1}{9}\left(a+b+c\right)^2=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Công Minh Phạm Bá
Xem chi tiết
oooloo
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 6 2020 lúc 0:24
khoimzx
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 5 2020 lúc 20:29

\(\frac{a}{b+2c}+\frac{a}{b+2a}\ge\frac{4a}{2a+2b+2c}=\frac{2a}{a+b+c}\)

Tương tự: \(\frac{b}{c+2a}+\frac{b}{c+2b}\ge\frac{2b}{a+b+c}\) ; \(\frac{c}{a+2b}+\frac{c}{a+2c}\ge\frac{2c}{a+b+c}\)

Cộng vế với vế:

\(\Rightarrow\frac{1}{2}.VT+\frac{a}{b+2a}+\frac{b}{c+2b}+\frac{c}{a+2c}\ge2\)

\(\Leftrightarrow VT+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\ge4\)

\(\Leftrightarrow VT+\left(1-\frac{b}{b+2a}\right)+\left(1-\frac{c}{c+2b}\right)+\left(1-\frac{a}{a+2c}\right)\ge4\)

\(\Leftrightarrow VT\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vinh Lê Thành
Xem chi tiết
Toi da tro lai va te hai...
31 tháng 5 2020 lúc 10:51

\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
31 tháng 5 2020 lúc 10:53

BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)

Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)

Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)

Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)

\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)

Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)

Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1

Khách vãng lai đã xóa
Lưu Thùy Dương
15 tháng 6 2020 lúc 17:36

1njfnjgjggnvfkgnbmvfvm 

Khách vãng lai đã xóa
Pham Thi Thanh Thuy
Xem chi tiết
Nguyễn Thiều Công Thành
12 tháng 7 2017 lúc 22:58

mẫu phải là mũ 2 chứ,sao lại mũ 3 zậy bn

Pham Thi Thanh Thuy
12 tháng 7 2017 lúc 23:03

mũ 2 và mũ 3 nha bạn. cả 2 cái cách làm tương tự nhau.nếu bạn ko làm đc mũ 3, bn có thể làm mũ 2 chi mình xem đc ko

Nguyễn Thiều Công Thành
13 tháng 7 2017 lúc 8:14

làm thì làm được nhưng mũ 3 rắc rối hơn

 ta có:

\(\frac{a^2}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\ge a-\frac{2ab^3}{3b^2\sqrt[3]{a}}=a-\frac{2b\sqrt[3]{a^2}}{3}\)

tương tự như thế 

\(\frac{b^2}{b+2c^3}\ge a-\frac{2c\sqrt[3]{b^2}}{3};\frac{c^2}{c+2a^3}\ge c-\frac{2a\sqrt[3]{c^2}}{3}\)

áp dụng bất đẳng thức cô si ta có:

\(b\sqrt[3]{a^2}\le\frac{2a+b}{3};c\sqrt[3]{b^2}\le\frac{2b+c}{3};a\sqrt[3]{c^2}\le\frac{2c+a}{3}\)

\(\Rightarrow\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge a+b+c-\frac{4a+2b}{9}-\frac{4b+2c}{9}-\frac{4c+2a}{9}=3-2=1\)

dấu "=" xảy ra khi a=b=c=1

Nguyễn Thị Quỳnh Anh
Xem chi tiết
Lê Đức Lương
12 tháng 3 2021 lúc 18:11

\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow abc\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

CHÚC BẠN HỌC TỐT

Khách vãng lai đã xóa

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)

Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)

\(\Rightarrow bc+ac-ab=0\)

\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)

\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)

\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)

Vậy \(E=0\)

Khách vãng lai đã xóa
Nguyễn Quang 	Việt
13 tháng 3 2021 lúc 18:18
Ko biết Oke
Khách vãng lai đã xóa
Không Có Tên
Xem chi tiết
pham trung thanh
22 tháng 4 2018 lúc 16:51

Ngược dấu rồi

Không Có Tên
22 tháng 4 2018 lúc 16:53

Mk sửa r đó. H giúp mk vs. Cảm ơn

pham trung thanh
22 tháng 4 2018 lúc 16:55

Cô-si mẫu suy ra: 

\(A\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\)

Dễ cm biểu thức trong ngoặc = 1. 

Suy ra A <=1/2

Dấu = khi a=b=c=1