Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
khoimzx

Cho a,b,c > 0. CMR:

\(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)

Nguyễn Việt Lâm
20 tháng 5 2020 lúc 20:29

\(\frac{a}{b+2c}+\frac{a}{b+2a}\ge\frac{4a}{2a+2b+2c}=\frac{2a}{a+b+c}\)

Tương tự: \(\frac{b}{c+2a}+\frac{b}{c+2b}\ge\frac{2b}{a+b+c}\) ; \(\frac{c}{a+2b}+\frac{c}{a+2c}\ge\frac{2c}{a+b+c}\)

Cộng vế với vế:

\(\Rightarrow\frac{1}{2}.VT+\frac{a}{b+2a}+\frac{b}{c+2b}+\frac{c}{a+2c}\ge2\)

\(\Leftrightarrow VT+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\ge4\)

\(\Leftrightarrow VT+\left(1-\frac{b}{b+2a}\right)+\left(1-\frac{c}{c+2b}\right)+\left(1-\frac{a}{a+2c}\right)\ge4\)

\(\Leftrightarrow VT\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)

Dấu "=" xảy ra khi \(a=b=c\)


Các câu hỏi tương tự
Nguyễn Thu Trà
Xem chi tiết
Anh Pha
Xem chi tiết
Agami Raito
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Agami Raito
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Lee Thuu Hà
Xem chi tiết
trung le quang
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết