Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vo Trong Duy

Cho a,b,c>0 thỏa mãn a+b+c=3. CMR: \(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\)

Âu Dương Thiên Vy
28 tháng 1 2018 lúc 10:49

Áp dụng BĐ0T \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với x,y,z >0 có :

Vế trái \(\ge\frac{\left(a+b+c\right)^2}{a+b+c+2\cdot\left(a^2+b^2+c^2\right)}=\frac{9}{3+2\cdot\left(a^2+b^2+c^2\right)}\) (1) (vì a+b+c=3)

Có \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-2\cdot\left(a+b+c\right)+3\ge0\)

\(\Leftrightarrow a^2+b^2+c^2-3\ge0\) (vì a+b+c=3)

\(\Leftrightarrow a^2+b^2+c^2\ge3\left(2\right)\)

Từ (1) và (2) => đpcm

k cho mk nhoa !!!!!!!!!!

Thắng Nguyễn
28 tháng 1 2018 lúc 12:32

Ngược dấu rồi bạn ơi

Không mất tính tổng quát giả sử \(a\ge b\ge c\)

Áp dụng BĐT Chebyshev ta có: \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\le3\left(a^4+b^4+c^4\right)\)

\(\Rightarrow3\left(a^3+b^3+c^3\right)\le3\left(a^4+b^4+c^4\right)\)\(\Rightarrow a^3+b^3+c^3\le a^4+b^4+c^4\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\frac{a^4}{a^3+2a^2b^2}+\frac{b^4}{b^3+2b^2c^2}+\frac{c^4}{c^3+2a^2c^2}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=1=VP\)

Dấu "=" kh \(a=b=c=1\)

Tuyển Trần Thị
28 tháng 1 2018 lúc 16:27

bn sử dụng bdt csi ngược dấu

\(\frac{a^2}{a+2b^2}\)=\(a-\frac{2ab^2}{a+2b^2}=a-\frac{2ab^2}{a+b^2+b^2}\ge a-\frac{2ab^2}{3.\sqrt[3]{ab^4}}=a-\frac{2}{3}\left(\sqrt[3]{a^2b^2}\right)\) \(\ge a-\frac{2}{3}\left(\frac{ab+ab+1}{3}\right)=a-\frac{2}{9}\left(2ab+1\right)\)

ttu \(vt\ge a+b+c-\frac{2}{9}\left(2ab+2bc+2ac+3\right)\ge3-\frac{2}{9}\left(2.\frac{\left(a+b+c\right)^2}{3}+3\right)\)

 =\(3-\frac{2}{9}\left(2.3+3\right)=3-2=1\)

dau = xảy ra khi a=b=c=1


Các câu hỏi tương tự
Nguyễn Hương Giang
Xem chi tiết
Công Minh Phạm Bá
Xem chi tiết
Vinh Lê Thành
Xem chi tiết
Pham Thi Thanh Thuy
Xem chi tiết
Ngô Ngọc Khánh
Xem chi tiết
WTF
Xem chi tiết
Khánh Vũ Trọng
Xem chi tiết
Duong Nguyen Tuan
Xem chi tiết
The Icetaker
Xem chi tiết