Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 20:15

a) Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3\left(x^2-1\right)\)

\(=4x-3x^2+3\)

\(=-3x^2+4x+3\)

b) Ta có: \(5\left(x+2\right)\left(x-2\right)-\dfrac{1}{2}\left(6-8x\right)^2+17\)

\(=5\left(x^2-4\right)-\dfrac{1}{2}\left(64x^2-96x+36\right)+17\)

\(=5x^2-20-32x^2+48x-16+17\)

\(=-27x^2+48x-19\)

Daisy
Xem chi tiết
Trường Nguyễn Công
21 tháng 11 2021 lúc 14:17

a) đã rút gọn
b) (x-3)(x+3)-(x-3)(x+1)
= (x-3)(x+3-x-1)
= (x-3)2

Nguyễn Bích Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 10:03

\(A=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+2\sqrt{x}+3-2x+3\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3x+7\sqrt{x}-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

HT.Phong (9A5)
3 tháng 8 2023 lúc 10:10

\(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) (ĐK: \(x\ne4;x\ne9;x\ge0\))

\(A=\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(A=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(A=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\sqrt{x}-9-\left(x-3\sqrt{x}+\sqrt{x}-3\right)-\left(2x-4\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\sqrt{x}-9-x+2\sqrt{x}+3-2x+3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{-3x+7\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

Phong Vũ Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:37

a: \(=2x^2-6x+x-3-20x+8x^2\)

\(=10x^2-25x-3\)

b: \(=x^2+4x+4-2\left(x^2-9\right)+10\)

\(=x^2+4x+14-2x^2+18\)

\(=-x^2+4x+32\)

Trần Ngọc Anh Thư
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 6 2023 lúc 10:13

a: \(=\dfrac{\left(x+1\right)\left[\left(3x-2\right)-\left(2x+5\right)\left(x-1\right)\right]}{x+1}\)

=3x-2-2x^2+2x-5x+5

=-2x^2+3

b: \(=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\)

c: =x^3-3x^2+3x-1-x^3-1+9x^2-1

=6x^2+3x-3

YangSu
24 tháng 6 2023 lúc 10:18

\(a,\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]:\left(x+1\right)\)

\(=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x-1\right)\left(x+1\right)\right]:\left(x+1\right)\)

\(=\left[\left(x+1\right)\left(3x-2-\left(2x+5\left(x-1\right)\right)\right)\right]:\left(x+1\right)\)

\(=\left[\left(x+1\right)\left(3x-2-2x^2+2x-5x+5\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(-2x^2+3\right)\right].\dfrac{1}{x+1}\)

\(=-2x^2+3\)

\(b,\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)\)

\(=\left(2x+1\right)\left[\left(2x+1\right)-2\left(3-x\right)\right]\)

\(=\left(2x+1\right)\left(2x+1-6+2x\right)\)

\(=\left(2x+1\right)\left(4x-5\right)\)

\(c,\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)

\(=x^3-3x^2+3x-1-x^3-1-\left(3x-9x^2+1-3x\right)\)

\(=-3x^2+3x-2-3x+9x^2-1+3x\)

\(=6x^2+3x-3\)

Lê Thị Thu Liễu
Xem chi tiết
Châu Sa
6 tháng 10 2021 lúc 14:10

\(A=\left(x+2\right)^3-\left(x-2\right)^3-12x^2=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2=16\)

Lê Thị Thu Liễu
Xem chi tiết
Trang Kieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 20:40

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

huy giang nguyễn trần
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
16 tháng 8 2023 lúc 16:37

`@` `\text {Ans}`

`\downarrow`

`A= (2x - 3)^2 - (2x + 3)^2`

`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`

`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`

`= -6 * 4x`

`= -24x`

2611
16 tháng 8 2023 lúc 16:35

`A=(2x-3)^2-(2x+3)^2`

`A=(2x-3-2x-3)(2x-3+2x+3)`

`A=-6.4x=-24x`

Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 0:57

b: B=(x+1)^2-2(2x-1)(x+1)+4x^2-4x+1

=(x+1)^2-2(2x-1)(x+1)+(2x-1)^2

=(x+1-2x+1)^2

=(-x+2)^2=x^2-4x+4

Hoàn Hà
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 12:23

a) \(A=\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)

\(A=\left[\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}\right)^3+1^3}{\sqrt{x}+1}-\sqrt{x}\right]\)

\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right]\)

\(A=\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(A=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(A=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2\)

\(A=\left[\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\right]^2\)

\(A=\left(x-1\right)^2\)

\(A=x^2+2x+1\)