Giải phương trình
1/3x-1 + 1/2x+4 = 1/9x-2 + 1/5x-4.
Giải phương trình
1) 2x ( x – 3 ) + 5 ( x – 3 ) = 0
2) ( x2 – 4 ) – ( x – 2 ) ( 3 – 2x ) = 0
3) ( 2x – 1 )2 – ( 2x + 5 )2 = 11
4) ( 2x + 1 )2 ( 3x – 5 ) = 4x2 – 1
5) 3x2 – 5x – 8 = 0
6) ( 2x + 1 )2 ( 3x – 5 ) = 4x2 – 1
7) 3x2 – 5x – 8 = 0
8) \(\left|x-5\right|=3\)
9) \(\left|2x-5\right|=3-x\)
10) \(\left|2x+1\right|=\left|x-1\right|\)
11) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
12) \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
1) Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
2) Ta có: \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3) Ta có: \(\left(2x-1\right)^2-\left(2x+5\right)^2=11\)
\(\Leftrightarrow4x^2-4x-1-4x^2-20x-25=11\)
\(\Leftrightarrow-24x=11+1+25=37\)
hay \(x=-\dfrac{37}{24}\)
5) Ta có: \(3x^2-5x-8=0\)
\(\Leftrightarrow3x^2+3x-8x-8=0\)
\(\Leftrightarrow3x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{8}{3}\end{matrix}\right.\)
8) Ta có: \(\left|x-5\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
10) Ta có: \(\left|2x+1\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x-1\\2x+1=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-x=-1-1\\2x+x=1-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
Giải các phương trình
1,\(x\left(x-1\right)=2\left(x-1\right)\)
2, \(\left(x+2\right)\left(2x-3\right)=x^2-4\)
3, \(x^2+3x+2=0\)
4, \(5x^2+5x+3=0\)
5, \(x^3+x^2-12x=0\)
1, x(x-1)=2(x-1)
<=> x(x-1)-2(x-1)=0
<=> (x-2)(x-1)=0
<=>x=2 hoặc x=1
vậy ...
2, (x+2)(2x-3)=x^2 -4
<=>(x+2)(2x-3)=(x-2)(x+2)
<=> (x+2)(2x-3)-(x-2)(x+2)=0
<=> (x+2)(2x-3-x+2)=0
<=> x=-2 hoặc x=1
vây...
3,x^2 +3x +2=0
<=> x^2 +x+2x+2=0
<=>(x+2)(x+1)=0
<=> x=-2 hoặc x=-1
vậy ...
5, x^3+x^2-12x =0
<=> x(x^2+x-12)=0
<=>x(x^2-3x+4x-12)=0
<=>x(x+4)(x-3)=0
<=> x=0 hoặc x=-4 hoặc x=3
vậy ...
Bài 1: Giải phương trình
1) \(\sqrt{4x^2+12x+9}=2-x\left(vớix\le0\right)\)
2) \(\sqrt{x^4+2x^2+1}=x^2+5x+4\) ( với \(x^2+5x+4>0\))
3) \(\sqrt{5x+1}=4\)
4) \(\sqrt{3-x}=7\)
Câu 2,3,4 nx thôi ạ. Câu 1 có bạn giúp r ạ
1)\(\sqrt{4x^2+12x+9}=2-x\)
\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)
\(\Leftrightarrow\left|2x+3\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\)
2)\(\sqrt{x^4+2x^2+1}=x^2+5x+4\) ĐK:\(x\ge-1\)
\(\Leftrightarrow\sqrt{\left(x^2+1\right)^2}=x^2+5x+4\)
\(\Leftrightarrow\left|x^2+1\right|=x^2+5x+4\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=x^2+5x+4\\x^2+1=-x^2-5x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\2x^2+5x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\2\left(x+\dfrac{5}{4}\right)^2+\dfrac{15}{8}=0\left(voli\right)\end{matrix}\right.\)
Giải Phương Trình
a, (2x+3)^2 - 3(x-4) (x+4) = (x-2)^2 +1
b, (3x-2) (9x^2 + 6x +4) - (3x-1) ( 9x^2 - 3x +1) = x+4
c, x(x-1) - (x-3) (x+4) = 5x
d, (2x+1) (2x-1) = 4x(x-7) - 3x
Giải phương trình
1) 7 - (2x + 4) = - (x +4)
2) ( x - 1) - (2x -1) = 9 - x
3) (x + 1) - (2x - 3) = ( 2x - 1)( x + 5)
\(1,\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow x-2x=-4-7+4\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
Vậy \(S=\left\{7\right\}\)
\(2,\Leftrightarrow x-1-2x+1=9-x\)
\(\Leftrightarrow x+x-2x=9-1+1\)
\(\Leftrightarrow0x=9\)
\(\Rightarrow x\in\varnothing\)
Vậy \(S=\left\{\varnothing\right\}\)
\(3,\Leftrightarrow2x^2+3x-2x+3=2x^2+10x-x-5\)
\(\Leftrightarrow2x^2-2x^2+3x-2x-10x+x=-5-3\)
\(-8x=-8\)
\(\Rightarrow x=1\)
Vậy \(S=\left\{1\right\}\)
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
Giải phương trình
1) (3x - 2)( 4x + 5) = 0
2) 2x - 7= 5x + 20
(3x-2)(4x+5)=0
=> 3x-2=0 hoặc 4x+5=0
3x=2 4x=-5
x=2/3 x=-5/4
2) 2x-7=5x+20
2x-5x=20+7
-3x=27
x=-9
Bài 1:
\(\Leftrightarrow3x-2=0\) hay \(\Leftrightarrow4x+5=0\)
\(\Leftrightarrow3x=2\) \(\Leftrightarrow4x=-5\)
\(\Leftrightarrow x=\dfrac{2}{3}\) \(\Leftrightarrow x=-\dfrac{5}{4}\)
Vậy S = \(\left\{\dfrac{2}{3};-\dfrac{5}{4}\right\}\)
Bài 2:
\(\Leftrightarrow2x-5x=20+7\\ \Leftrightarrow-3x=27\\ \Leftrightarrow x=\dfrac{27}{-3}=-9\)
Vậy S = -9
Giải các phương trình :
a) \(3x^2-6x-4=4\left(x-1\right)\sqrt{3x+1}\)
b) \(\sqrt{6x-1}+\sqrt{9x^2-1}=6x-9x^2\)
c) \(3\left(\sqrt{2x-1}+\sqrt{x+3}\right)-2\sqrt{2x^2+5x-3}=3x+4\)
x=0 ; x=2/3 - cau b
anh giai tu giai thu
Giải phương trình
(3x-2)2 -4x(x-3)=(5x+1)(x-4)
(x+3)(3x-1)=9x2 -1
2x+4/x+3 -7-x/x-3 =3
\(\left(3x-2\right)^2-4x\left(x-3\right)=\left(5x+1\right)\left(x-4\right).\)
\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)
\(\Leftrightarrow9x^2-12x+4-4x^2+12x=5x^2-20x+x-4\)
\(\Leftrightarrow19x=-8\)
\(\Rightarrow x=-\frac{8}{19}\)
\(\left(x+3\right)\left(3x-1\right)=9x^2-1\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=\left(3x-1\right)\left(3x+1\right)\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3-3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(2-2x\right)=0\)
Th1 : 3x - 1 = 0
=> x = 1/3
Th2: 2 - 2x = 0
=> x = 1