C=1^2x2^2x...x1000^2
tính C
C=1^2x2^2x...x1000^2
tính C
cần gấp
Cho y= \(\left\{{}\begin{matrix}x+1\\x^2-2\end{matrix}\right.\)
x+1 với x≥2
x2 - 2 với x <2
tính giá trị của hàm số khi x=3, x=-1,x=2
\(x=3\ge2\Leftrightarrow y=3+1=4\\ x=-1< 2\Leftrightarrow y=\left(-1\right)^2-2=1-2=-1\\ x=2\ge2\Leftrightarrow y=2+1=3\)
Thực hiện phép tính:
a)2x(3x2 - 5x + 3) b)-2x2(x2 + 5x - 3) c)-1/2x2(2x3 - 4x + 3)
d) (2x - 1)(x2 +5- 4) c) 7x(x - 4) - (7x + 3)(2x2 - x + 4).
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^4-10x^3+6x^2\)
c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)
d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)
a) Thu gọn và sắp xếp các hạng tử của đa thức sau theo lúy thừa giảm của biến
A(x)=5x^2-1/2x+8x^4-3x^2+9
b) Cho 2 đa thức
B(x)=12x^4+6x^3-1/2x+3,C(x)=-12x^4-2x^3+5x+1/2
Tính B(x)+C(x) và B(x)-C(x) tính nghiệm của đa thức K(x)=-6x+30
a^3+b^3+c^3=1 và (a+b)/c+(a+c)/b+(b+c)/a=-2
tính 1/a+1/b+1/c
** Bạn lưu ý lần sau viết đề bằng công thức toán để được hỗ trợ tốt hơn.
Lời giải:
$\frac{a+b}{c}+\frac{a+c}{b}+\frac{b+c}{a}=-2$
$\Leftrightarrow \frac{a+b}{c}+1+\frac{a+c}{b}+1+\frac{b+c}{a}=0$
$\Leftrightarrow (a+b+c)(\frac{1}{c}+\frac{1}{b})+\frac{b+c}{a}=0$
$\Leftrightarrow \frac{(a+b+c)(b+c)}{bc}+\frac{b+c}{a}=0$
$\Leftrightarrow (b+c)(\frac{a+b+c}{bc}+\frac{1}{a})=0$
$\Leftrightarrow (b+c).\frac{a(a+b+c)+bc}{abc}=0$
$\Leftrightarrow \frac{(b+c)(a+b)(a+c)}{abc}=0$
$\Rightarrow (a+b)(b+c)(c+a)=0$
$\Rightarrow a+b=0$ hoặc $b+c=0$ hoặc $c+a=0$
Không mất tổng quát giả sử $a+b=0\Rightarrow a=-b$
$1=a^3+b^3+c^3=(-b)^3+b^3+c^3=c^3\Rightarrow c=1$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{-1}{b}+\frac{1}{b}+\frac{1}{1}=1$
Vậy..........
. Đưa các phương trình sau về dạng ax2 + bx + c = 0 và chỉ rõ các các hệ số a, b, c. a) 2x2 – 2x = 5 + x; b) x2 + 2x = mx + m, m là hằng số; c) 2x2 + (3x – 1) = 1 + .
Giải
a) Ta có : 2.x2 -2.x = 5.x
<=> 2.x2 -3.x-5=0 : a = 2 ; b = 3 ; c = -5
b) Ta có : x2 +2.x = m. x + m
<=> x2 + ( 2-m ) .x - m = 0 : a = 1 ; b=2-m ; c=-m
c) Ta có : 2.x2 \(+\sqrt{2}.\left(3.x-1\right)=1+\sqrt{2}\)
<=> 2.x2 + 3.\(\sqrt{2}.x-2.\sqrt{2}-1=0\): a = 2 ; b= 3\(\sqrt{2};c=-2\sqrt{2}-1\)
a) \(2x^2-2x=5+x\)
\(\Leftrightarrow2x^2-x-5=0\)với \(\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}\)
b) \(x^2+2x=mx+m\)
\(\Leftrightarrow x^2+\left(2-m\right)x-m=0\)với \(\hept{\begin{cases}z=1\\b=3-m\\c=-m\end{cases}}\)
c) \(2x^2+\sqrt{2}\left(3x-1\right)=1+\sqrt{2}\)
\(\Leftrightarrow2x^2+3\sqrt{2}\cdot x-2\sqrt{2}-1=0\)
với \(\hept{\begin{cases}a=2\\b=3\sqrt{2}\\c=-2\sqrt{2}-1\end{cases}}\)
Kết quả phép tính nhân (2x+1).(x-3) là:
A.2x2+7x-3
B.2x2-5x-3
C.2x2-3
D.x2-5x-2
\(=2x.x-2x.3+x-3\\ =2x^2-6x+x-3\\ =2x^2-5x-3\)
=> Chọn B
Bài 1 : Cho các phân thức sau :
A= 2x2 + 6x / (x-1).(x+3)
B= x2-16 / x2-8x+16
C= x2+2x / x2-2x
D= x2 + x -12 / x3-27
E= 2x3+4x2 +2x / 2x2 -4x
a: ĐKXĐ của A là x<>1; x<>-3
ĐKXĐ của B là x<>4
ĐKXĐ của C là x<>0; x<>2
ĐKXĐ của D là x<>3
ĐKXĐ của E là x<>0; x<>2
b: \(A=\dfrac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{2x}{x-1}\)
Để A=0 thì 2x=0
=>x=0
\(B=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)
Để B=0 thì x+4=0
=>x=-4
\(C=\dfrac{x\left(x+2\right)}{x\left(x-2\right)}=\dfrac{x+2}{x-2}\)
Để C=0 thì x+2=0
=>x=-2
\(D=\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{x+4}{x^2+3x+9}\)
Để D=0 thi x+4=0
=>x=-4
\(E=\dfrac{2x\left(x^2+2x+1\right)}{2x\left(x-2\right)}=\dfrac{\left(x+1\right)^2}{x-2}\)
Để E=0 thì (x+1)^2=0
=>x=-1
Bài 1:phân tích đa thức thành nhân tử
a)x2-2x-4y2-4y e)x4+2x3+2x2+2x+1
b)x3+2x2+2x+1 f)x5+x4+x3+x2+x+1
c)x3-4x2+12x-27
d)a6-a4+2a3+2a2
Làm chi tiết giúp mình với ạ, cảm ơn
a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)
d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)
a) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
b) Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
d) Ta có: \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left[a^2\left(a^2-1\right)+\left(2a+2\right)\right]\)
\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\cdot\left(a+1\right)\left(a^3-a+2\right)\)
c) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x^3-27\right)-\left(4x^2-12x\right)\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)