Cho P=\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
a. Timd ĐKXĐ của P
b. Tìm max P
tìm Max của\(P=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)với x y z > 0 và xy+yz+xz=xyz
Cho xy+yz+xz=2xyz (x,y,z>0). Tìm Max P= \(\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2z^2x^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)
Cho x.y,z>0.Tìm Max A=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm max \(M=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Cho x,y,z là 3 số dương . Tìm Max của P=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm Max của M=\(\sqrt{x-2}+\sqrt{y+4}\) biết x+y=8
\(3-2P=\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{xz}}+\frac{z}{z+2\sqrt{xy}}\)
\(3-2P\ge\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)
\(\Rightarrow2P\le2\Rightarrow P\le1\)
Dấu "=" xảy ra khi \(x=y=z\)
\(M\le\sqrt{\left(1+1\right)\left(x+y+2\right)}=\sqrt{20}=4\sqrt{5}\)
\(M_{max}=4\sqrt{5}\) khi \(\left\{{}\begin{matrix}x-2=y+4\\x+y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
Cho các số thực dương thõa mãn \(\sqrt[]{xy}+\sqrt[]{yz}+\sqrt[]{xz}=\sqrt[]{xyz}\)
Tìm Min của P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
cho x,y,zduongw thay đổi, thoả mãn xyz=1 . tìm max của S = \(\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+zx}\orbr{\begin{cases}\\\end{cases}}\)
mình tính rút gọn dc : \(\frac{\sqrt{z}\left(\sqrt{x}+1+\sqrt{xz}\right)}{xz+z+1}\)
cho \(x\ge1,y\ge2,z\ge3\)
tìm GTLN của \(A=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(=>A=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)
áp dụng BĐT AM-GM
\(=>\sqrt{x-1}\le\dfrac{x-1+1}{2}=\dfrac{x}{2}\)
\(=>\dfrac{\sqrt{x-1}}{x}\le\dfrac{\dfrac{x}{2}}{x}=\dfrac{1}{2}\left(1\right)\)
có \(\dfrac{\sqrt{y-2}}{y}=\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\)
\(=>\sqrt{\left(y-2\right)2}\le\dfrac{y-2+2}{2}=\dfrac{y}{2}\)
\(=>\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\le\dfrac{\dfrac{y}{2}}{\sqrt{2}.y}=\dfrac{1}{2\sqrt{2}}\left(2\right)\)
tương tự \(=>\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\left(3\right)\)
(1)(2)(3)\(=>A\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
tìm max :\(A=\frac{xy\sqrt{z-5}+xz\sqrt{y-4}+yz\sqrt{x-3}}{xyz}\)
Viết lại A = \(\frac{\text{ }\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)
Ta có : \(\sqrt{5\left(z-5\right)}\le\frac{5+z-5}{2}=\frac{z}{2}\Rightarrow\sqrt{z-5}\le\frac{z}{2\sqrt{5}}\) => \(\frac{z-5}{z}\le\frac{1}{2\sqrt{5}}\)
tương tự \(\sqrt{y-4}\le\frac{y}{4}\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)
\(\frac{\sqrt{x-3}}{x}\le\frac{1}{2\sqrt{3}}\)
=> A \(\le\frac{1}{2\sqrt{5}}+\frac{1}{4}+\frac{1}{2\sqrt{3}}\)
Vậy GTLN .... tại x = 6 ; y = 8 ; z = 10