Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Duy Dai
Xem chi tiết
Baek Hyun
Xem chi tiết
Nhái Channel
Xem chi tiết
Thăng Vũ
21 tháng 11 2018 lúc 21:18

Sử dụng Cô-si ngược dấu có thêm hằng số

Thăng Vũ
21 tháng 11 2018 lúc 21:22

Kq là 1 nhé

Nhái Channel
21 tháng 11 2018 lúc 22:06

viết cách làm giúp mk vs

Lunox Butterfly Seraphim
Xem chi tiết
Bi Bi
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 10 2019 lúc 20:27

\(3-2P=\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{xz}}+\frac{z}{z+2\sqrt{xy}}\)

\(3-2P\ge\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

Dấu "=" xảy ra khi \(x=y=z\)

\(M\le\sqrt{\left(1+1\right)\left(x+y+2\right)}=\sqrt{20}=4\sqrt{5}\)

\(M_{max}=4\sqrt{5}\) khi \(\left\{{}\begin{matrix}x-2=y+4\\x+y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Nguyễn Huy Hoàng
Xem chi tiết
liên hoàng
Xem chi tiết
Minh Đức
Xem chi tiết
missing you =
16 tháng 7 2021 lúc 19:03

\(=>A=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

áp dụng BĐT AM-GM

\(=>\sqrt{x-1}\le\dfrac{x-1+1}{2}=\dfrac{x}{2}\)

\(=>\dfrac{\sqrt{x-1}}{x}\le\dfrac{\dfrac{x}{2}}{x}=\dfrac{1}{2}\left(1\right)\)

có \(\dfrac{\sqrt{y-2}}{y}=\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\)

\(=>\sqrt{\left(y-2\right)2}\le\dfrac{y-2+2}{2}=\dfrac{y}{2}\)

\(=>\dfrac{\sqrt{\left(y-2\right)2}}{\sqrt{2}.y}\le\dfrac{\dfrac{y}{2}}{\sqrt{2}.y}=\dfrac{1}{2\sqrt{2}}\left(2\right)\)

tương tự \(=>\dfrac{\sqrt{z-3}}{z}\le\dfrac{1}{2\sqrt{3}}\left(3\right)\)

(1)(2)(3)\(=>A\le\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

 

 

 

 

 

võ đặng phương thảo
Xem chi tiết
Trần Đức Thắng
23 tháng 9 2015 lúc 21:49

Viết lại A = \(\frac{\text{ }\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)

Ta có : \(\sqrt{5\left(z-5\right)}\le\frac{5+z-5}{2}=\frac{z}{2}\Rightarrow\sqrt{z-5}\le\frac{z}{2\sqrt{5}}\) => \(\frac{z-5}{z}\le\frac{1}{2\sqrt{5}}\)  

tương tự \(\sqrt{y-4}\le\frac{y}{4}\Rightarrow\frac{\sqrt{y-4}}{y}\le\frac{1}{4}\)  

            \(\frac{\sqrt{x-3}}{x}\le\frac{1}{2\sqrt{3}}\)

=> A \(\le\frac{1}{2\sqrt{5}}+\frac{1}{4}+\frac{1}{2\sqrt{3}}\)

Vậy GTLN .... tại x = 6 ; y = 8 ; z = 10