Cho x,y,z là 3 số dương . Tìm Max của P=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm Max của M=\(\sqrt{x-2}+\sqrt{y+4}\) biết x+y=8
Tìm GTLN:
\(P=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Cho số dương x,y,z thõa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm Max \(K=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Tìm giá trị lớn nhất của biểu thức : \(M=\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Cho \(x\ge3,y\ge2,z\ge1.CMR\)
\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\le\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
cho x,y,z > 0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Cmr: \(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Cho M=\(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Với x\(\ge1\),y\(\ge2\),z\(\ge3\).CM M\(\le\frac{1}{2}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right)\)
Cho x,y,z là các số dương và xyz=1. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{xz}+x}\)
Cho \(A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\). Biết xyz=4; tính \(\sqrt{A}\)